configuration_utils.py 33.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
"""ConfigMixin base class and utilities."""

18
import dataclasses
19
import functools
20
import importlib
Patrick von Platen's avatar
improve  
Patrick von Platen committed
21
import inspect
22
23
24
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
25
from collections import OrderedDict
vincedovy's avatar
vincedovy committed
26
from pathlib import Path
Marc Sun's avatar
Marc Sun committed
27
from typing import Any, Dict, Optional, Tuple, Union
28

29
import numpy as np
Marc Sun's avatar
Marc Sun committed
30
from huggingface_hub import DDUFEntry, create_repo, hf_hub_download
31
32
33
34
35
36
from huggingface_hub.utils import (
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    validate_hf_hub_args,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
from requests import HTTPError
38

Patrick von Platen's avatar
Patrick von Platen committed
39
from . import __version__
40
41
42
43
44
45
46
47
from .utils import (
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    DummyObject,
    deprecate,
    extract_commit_hash,
    http_user_agent,
    logging,
)
48

49

50
51
52
53
54
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)


Patrick von Platen's avatar
Patrick von Platen committed
87
class ConfigMixin:
88
    r"""
Steven Liu's avatar
Steven Liu committed
89
90
91
    Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
    provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
    saving classes that inherit from [`ConfigMixin`].
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
95
          [`~ConfigMixin.save_config`] (should be overridden by parent class).
Patrick von Platen's avatar
Patrick von Platen committed
96
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
97
98
          overridden by subclass).
        - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
Steven Liu's avatar
Steven Liu committed
99
        - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
100
101
          should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
          subclass).
102
    """
103

104
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
105
    ignore_for_config = []
106
    has_compatibles = False
107

108
109
    _deprecated_kwargs = []

110
    def register_to_config(self, **kwargs):
111
112
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
113
114
115
116
        # Special case for `kwargs` used in deprecation warning added to schedulers
        # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
        # or solve in a more general way.
        kwargs.pop("kwargs", None)
Patrick von Platen's avatar
Patrick von Platen committed
117

Patrick von Platen's avatar
Patrick von Platen committed
118
119
120
121
122
123
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
124

Patrick von Platen's avatar
Patrick von Platen committed
125
        self._internal_dict = FrozenDict(internal_dict)
126

127
128
129
130
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
131
        This function is mostly copied from PyTorch's __getattr__ overwrite:
132
133
134
135
136
137
138
139
140
141
142
143
144
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
            return self._internal_dict[name]

        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

145
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
146
        """
Steven Liu's avatar
Steven Liu committed
147
        Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
Patrick von Platen's avatar
Patrick von Platen committed
148
        [`~ConfigMixin.from_config`] class method.
149
150
151

        Args:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
152
                Directory where the configuration JSON file is saved (will be created if it does not exist).
153
154
155
156
157
158
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
159
160
161
162
163
164
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

165
166
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
167

168
        self.to_json_file(output_config_file)
Pedro Cuenca's avatar
Pedro Cuenca committed
169
        logger.info(f"Configuration saved in {output_config_file}")
170

171
172
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
173
            private = kwargs.pop("private", None)
174
175
176
177
178
179
180
181
182
183
184
185
186
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

187
    @classmethod
188
    def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
189
        r"""
Steven Liu's avatar
Steven Liu committed
190
        Instantiate a Python class from a config dictionary.
191
192
193

        Parameters:
            config (`Dict[str, Any]`):
Steven Liu's avatar
Steven Liu committed
194
195
                A config dictionary from which the Python class is instantiated. Make sure to only load configuration
                files of compatible classes.
196
197
198
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                Whether kwargs that are not consumed by the Python class should be returned or not.
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
199
                Can be used to update the configuration object (after it is loaded) and initiate the Python class.
Steven Liu's avatar
Steven Liu committed
200
201
                `**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
                overwrite the same named arguments in `config`.
Steven Liu's avatar
Steven Liu committed
202
203
204
205

        Returns:
            [`ModelMixin`] or [`SchedulerMixin`]:
                A model or scheduler object instantiated from a config dictionary.
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

        Examples:

        ```python
        >>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler

        >>> # Download scheduler from huggingface.co and cache.
        >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")

        >>> # Instantiate DDIM scheduler class with same config as DDPM
        >>> scheduler = DDIMScheduler.from_config(scheduler.config)

        >>> # Instantiate PNDM scheduler class with same config as DDPM
        >>> scheduler = PNDMScheduler.from_config(scheduler.config)
        ```
        """
        # <===== TO BE REMOVED WITH DEPRECATION
        # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
        if "pretrained_model_name_or_path" in kwargs:
            config = kwargs.pop("pretrained_model_name_or_path")

        if config is None:
            raise ValueError("Please make sure to provide a config as the first positional argument.")
        # ======>

        if not isinstance(config, dict):
            deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
            if "Scheduler" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
                    " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
                    " be removed in v1.0.0."
                )
            elif "Model" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
                    f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
                    " instead. This functionality will be removed in v1.0.0."
                )
            deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
            config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)

        init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)

        # Allow dtype to be specified on initialization
        if "dtype" in unused_kwargs:
            init_dict["dtype"] = unused_kwargs.pop("dtype")

254
255
256
257
        # add possible deprecated kwargs
        for deprecated_kwarg in cls._deprecated_kwargs:
            if deprecated_kwarg in unused_kwargs:
                init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
258

259
260
261
262
        # Return model and optionally state and/or unused_kwargs
        model = cls(**init_dict)

        # make sure to also save config parameters that might be used for compatible classes
YiYi Xu's avatar
YiYi Xu committed
263
264
265
266
        # update _class_name
        if "_class_name" in hidden_dict:
            hidden_dict["_class_name"] = cls.__name__

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        model.register_to_config(**hidden_dict)

        # add hidden kwargs of compatible classes to unused_kwargs
        unused_kwargs = {**unused_kwargs, **hidden_dict}

        if return_unused_kwargs:
            return (model, unused_kwargs)
        else:
            return model

    @classmethod
    def get_config_dict(cls, *args, **kwargs):
        deprecation_message = (
            f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
            " removed in version v1.0.0"
        )
        deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
        return cls.load_config(*args, **kwargs)

    @classmethod
287
    @validate_hf_hub_args
288
    def load_config(
289
290
291
292
293
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        return_unused_kwargs=False,
        return_commit_hash=False,
        **kwargs,
294
295
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        r"""
Steven Liu's avatar
Steven Liu committed
296
        Load a model or scheduler configuration.
Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
300
301

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
302
303
304
305
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
                      [`~ConfigMixin.save_config`].
Patrick von Platen's avatar
Patrick von Platen committed
306
307

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
308
309
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
313
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
314
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
Patrick von Platen's avatar
Patrick von Platen committed
315
316
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
317
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
318
319
320
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
321
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
322
323
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
Patrick von Platen's avatar
Patrick von Platen committed
324
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
325
326
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
327
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
328
                The subfolder location of a model file within a larger model repository on the Hub or locally.
329
            return_unused_kwargs (`bool`, *optional*, defaults to `False):
Steven Liu's avatar
Steven Liu committed
330
                Whether unused keyword arguments of the config are returned.
331
            return_commit_hash (`bool`, *optional*, defaults to `False):
Steven Liu's avatar
Steven Liu committed
332
                Whether the `commit_hash` of the loaded configuration are returned.
Patrick von Platen's avatar
Patrick von Platen committed
333

Steven Liu's avatar
Steven Liu committed
334
335
336
        Returns:
            `dict`:
                A dictionary of all the parameters stored in a JSON configuration file.
Patrick von Platen's avatar
Patrick von Platen committed
337
338

        """
339
        cache_dir = kwargs.pop("cache_dir", None)
340
341
        local_dir = kwargs.pop("local_dir", None)
        local_dir_use_symlinks = kwargs.pop("local_dir_use_symlinks", "auto")
342
343
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
344
        token = kwargs.pop("token", None)
345
346
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
347
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
348
        subfolder = kwargs.pop("subfolder", None)
349
        user_agent = kwargs.pop("user_agent", {})
Marc Sun's avatar
Marc Sun committed
350
        dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None)
351

352
353
        user_agent = {**user_agent, "file_type": "config"}
        user_agent = http_user_agent(user_agent)
354
355
356

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

357
358
359
360
361
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )
Marc Sun's avatar
Marc Sun committed
362
363
364
365
366
367
368
369
370
        # Custom path for now
        if dduf_entries:
            if subfolder is not None:
                raise ValueError(
                    "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). "
                    "Please check the DDUF structure"
                )
            config_file = cls._get_config_file_from_dduf(pretrained_model_name_or_path, dduf_entries)
        elif os.path.isfile(pretrained_model_name_or_path):
371
372
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
373
            if subfolder is not None and os.path.isfile(
Patrick von Platen's avatar
Patrick von Platen committed
374
375
376
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
377
378
379
            elif os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
380
            else:
381
382
383
384
385
386
387
388
389
390
391
392
393
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
394
                    token=token,
395
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
396
                    subfolder=subfolder,
397
                    revision=revision,
398
399
                    local_dir=local_dir,
                    local_dir_use_symlinks=local_dir_use_symlinks,
400
                )
401
402
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
403
404
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
405
                    " token having permission to this repo with `token` or log in with `huggingface-cli login`."
406
407
408
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
409
410
411
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
412
413
414
415
416
417
418
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
419
420
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
421
422
423
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
424
425
426
427
428
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
429
430
431
432
433
434
435
436
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
437
        try:
Marc Sun's avatar
Marc Sun committed
438
            config_dict = cls._dict_from_json_file(config_file, dduf_entries=dduf_entries)
439
440

            commit_hash = extract_commit_hash(config_file)
441
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
442
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
443

444
445
446
447
448
        if not (return_unused_kwargs or return_commit_hash):
            return config_dict

        outputs = (config_dict,)

449
        if return_unused_kwargs:
450
451
452
453
            outputs += (kwargs,)

        if return_commit_hash:
            outputs += (commit_hash,)
454

455
        return outputs
456

457
    @staticmethod
458
459
    def _get_init_keys(input_class):
        return set(dict(inspect.signature(input_class.__init__).parameters).keys())
460

patil-suraj's avatar
patil-suraj committed
461
462
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
463
464
465
466
        # Skip keys that were not present in the original config, so default __init__ values were used
        used_defaults = config_dict.get("_use_default_values", [])
        config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}

467
        # 0. Copy origin config dict
468
        original_dict = dict(config_dict.items())
469

470
471
        # 1. Retrieve expected config attributes from __init__ signature
        expected_keys = cls._get_init_keys(cls)
472
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
473
474
475
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Yuta Hayashibe's avatar
Yuta Hayashibe committed
476
        # remove flax internal keys
477
478
479
480
        if hasattr(cls, "_flax_internal_args"):
            for arg in cls._flax_internal_args:
                expected_keys.remove(arg)

481
        # 2. Remove attributes that cannot be expected from expected config attributes
Patrick von Platen's avatar
Patrick von Platen committed
482
483
484
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
485
486
487
488

        # load diffusers library to import compatible and original scheduler
        diffusers_library = importlib.import_module(__name__.split(".")[0])

489
490
491
492
493
        if cls.has_compatibles:
            compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
        else:
            compatible_classes = []

494
495
496
497
498
499
500
501
502
        expected_keys_comp_cls = set()
        for c in compatible_classes:
            expected_keys_c = cls._get_init_keys(c)
            expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
        expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
        config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}

        # remove attributes from orig class that cannot be expected
        orig_cls_name = config_dict.pop("_class_name", cls.__name__)
503
504
505
506
507
        if (
            isinstance(orig_cls_name, str)
            and orig_cls_name != cls.__name__
            and hasattr(diffusers_library, orig_cls_name)
        ):
508
509
510
            orig_cls = getattr(diffusers_library, orig_cls_name)
            unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
            config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
511
512
513
514
        elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)):
            raise ValueError(
                "Make sure that the `_class_name` is of type string or list of string (for custom pipelines)."
            )
515
516
517
518

        # remove private attributes
        config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}

519
520
521
        # remove quantization_config
        config_dict = {k: v for k, v in config_dict.items() if k != "quantization_config"}

522
        # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
patil-suraj's avatar
patil-suraj committed
523
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
524
        for key in expected_keys:
525
526
527
528
529
            # if config param is passed to kwarg and is present in config dict
            # it should overwrite existing config dict key
            if key in kwargs and key in config_dict:
                config_dict[key] = kwargs.pop(key)

Patrick von Platen's avatar
improve  
Patrick von Platen committed
530
531
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
532
533
534
535
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
536

537
        # 4. Give nice warning if unexpected values have been passed
538
539
540
541
542
543
544
        if len(config_dict) > 0:
            logger.warning(
                f"The config attributes {config_dict} were passed to {cls.__name__}, "
                "but are not expected and will be ignored. Please verify your "
                f"{cls.config_name} configuration file."
            )

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
545
        # 5. Give nice info if config attributes are initialized to default because they have not been passed
patil-suraj's avatar
patil-suraj committed
546
        passed_keys = set(init_dict.keys())
547
        if len(expected_keys - passed_keys) > 0:
548
            logger.info(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
549
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
550
            )
551

552
553
554
        # 6. Define unused keyword arguments
        unused_kwargs = {**config_dict, **kwargs}

555
        # 7. Define "hidden" config parameters that were saved for compatible classes
556
        hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
557
558

        return init_dict, unused_kwargs, hidden_config_dict
Patrick von Platen's avatar
Patrick von Platen committed
559

560
    @classmethod
Marc Sun's avatar
Marc Sun committed
561
562
563
564
565
566
567
568
    def _dict_from_json_file(
        cls, json_file: Union[str, os.PathLike], dduf_entries: Optional[Dict[str, DDUFEntry]] = None
    ):
        if dduf_entries:
            text = dduf_entries[json_file].read_text()
        else:
            with open(json_file, "r", encoding="utf-8") as reader:
                text = reader.read()
569
570
        return json.loads(text)

anton-l's avatar
anton-l committed
571
    def __repr__(self):
572
        return f"{self.__class__.__name__} {self.to_json_string()}"
573

574
575
    @property
    def config(self) -> Dict[str, Any]:
576
577
578
579
580
581
        """
        Returns the config of the class as a frozen dictionary

        Returns:
            `Dict[str, Any]`: Config of the class.
        """
Patrick von Platen's avatar
Patrick von Platen committed
582
        return self._internal_dict
583

584
    def to_json_string(self) -> str:
585
        """
Steven Liu's avatar
Steven Liu committed
586
        Serializes the configuration instance to a JSON string.
587
588

        Returns:
Steven Liu's avatar
Steven Liu committed
589
590
            `str`:
                String containing all the attributes that make up the configuration instance in JSON format.
591
        """
592
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
593
594
595
        config_dict["_class_name"] = self.__class__.__name__
        config_dict["_diffusers_version"] = __version__

596
597
598
        def to_json_saveable(value):
            if isinstance(value, np.ndarray):
                value = value.tolist()
vincedovy's avatar
vincedovy committed
599
600
            elif isinstance(value, Path):
                value = value.as_posix()
601
602
            return value

603
604
605
606
607
608
609
        if "quantization_config" in config_dict:
            config_dict["quantization_config"] = (
                config_dict.quantization_config.to_dict()
                if not isinstance(config_dict.quantization_config, dict)
                else config_dict.quantization_config
            )

610
        config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
611
        # Don't save "_ignore_files" or "_use_default_values"
Patrick von Platen's avatar
Patrick von Platen committed
612
        config_dict.pop("_ignore_files", None)
613
        config_dict.pop("_use_default_values", None)
614
615
        # pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
        _ = config_dict.pop("_pre_quantization_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
616

617
618
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

619
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
620
        """
Steven Liu's avatar
Steven Liu committed
621
        Save the configuration instance's parameters to a JSON file.
622
623
624

        Args:
            json_file_path (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
625
                Path to the JSON file to save a configuration instance's parameters.
626
627
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
628
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
629

Marc Sun's avatar
Marc Sun committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    @classmethod
    def _get_config_file_from_dduf(cls, pretrained_model_name_or_path: str, dduf_entries: Dict[str, DDUFEntry]):
        # paths inside a DDUF file must always be "/"
        config_file = (
            cls.config_name
            if pretrained_model_name_or_path == ""
            else "/".join([pretrained_model_name_or_path, cls.config_name])
        )
        if config_file not in dduf_entries:
            raise ValueError(
                f"We did not manage to find the file {config_file} in the dduf file. We only have the following files {dduf_entries.keys()}"
            )
        return config_file

Patrick von Platen's avatar
Patrick von Platen committed
644

645
def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
646
647
648
649
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
650
651
652
653
654
655
656
657

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
658
        config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
683
684
685

        # Take note of the parameters that were not present in the loaded config
        if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
686
            new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
687

688
        new_kwargs = {**config_init_kwargs, **new_kwargs}
689
        getattr(self, "register_to_config")(**new_kwargs)
690
        init(self, *args, **init_kwargs)
691
692

    return inner_init
693
694
695
696
697
698
699
700
701
702
703
704
705
706


def flax_register_to_config(cls):
    original_init = cls.__init__

    @functools.wraps(original_init)
    def init(self, *args, **kwargs):
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        # Ignore private kwargs in the init. Retrieve all passed attributes
707
        init_kwargs = dict(kwargs.items())
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        # Retrieve default values
        fields = dataclasses.fields(self)
        default_kwargs = {}
        for field in fields:
            # ignore flax specific attributes
            if field.name in self._flax_internal_args:
                continue
            if type(field.default) == dataclasses._MISSING_TYPE:
                default_kwargs[field.name] = None
            else:
                default_kwargs[field.name] = getattr(self, field.name)

        # Make sure init_kwargs override default kwargs
        new_kwargs = {**default_kwargs, **init_kwargs}
723
724
725
        # dtype should be part of `init_kwargs`, but not `new_kwargs`
        if "dtype" in new_kwargs:
            new_kwargs.pop("dtype")
726
727
728
729
730
731

        # Get positional arguments aligned with kwargs
        for i, arg in enumerate(args):
            name = fields[i].name
            new_kwargs[name] = arg

732
733
        # Take note of the parameters that were not present in the loaded config
        if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
734
            new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
735

736
737
738
739
740
        getattr(self, "register_to_config")(**new_kwargs)
        original_init(self, *args, **kwargs)

    cls.__init__ = init
    return cls
741
742
743
744
745
746
747
748
749
750


class LegacyConfigMixin(ConfigMixin):
    r"""
    A subclass of `ConfigMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
    pipeline-specific classes (like `DiTTransformer2DModel`).
    """

    @classmethod
    def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
751
        # To prevent dependency import problem.
752
753
754
755
756
757
        from .models.model_loading_utils import _fetch_remapped_cls_from_config

        # resolve remapping
        remapped_class = _fetch_remapped_cls_from_config(config, cls)

        return remapped_class.from_config(config, return_unused_kwargs, **kwargs)