test_pipelines.py 18.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
33
    StableDiffusionImg2ImgPipeline,
34
    StableDiffusionInpaintPipelineLegacy,
35
    StableDiffusionPipeline,
36
    UNet2DConditionModel,
37
    UNet2DModel,
38
    VQModel,
39
    logging,
40
41
)
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
43
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir
45
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
46
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
47
48
49
50
51


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
52
53
54
55
56
57
58
59
60
61
62
63
64
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
65
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
66
67
68
69
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
70
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
71
72
73
74
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
107
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
111
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
112
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
119
120
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
121
        )
122
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
127
128
129
130
131
132
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

244
245
    def test_components(self):
        """Test that components property works correctly"""
246
        unet = self.dummy_cond_unet
247
        scheduler = PNDMScheduler(skip_prk_steps=True)
248
249
250
251
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

252
253
254
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
255
256

        # make sure here that pndm scheduler skips prk
257
        inpaint = StableDiffusionInpaintPipelineLegacy(
258
259
260
261
262
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
263
            safety_checker=None,
264
            feature_extractor=self.dummy_extractor,
265
266
267
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
268
269

        prompt = "A painting of a squirrel eating a burger"
270
271
272
273
274
275
276

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

277
        image_inpaint = inpaint(
278
279
280
281
282
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
283
284
285
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
286
287
288
289
290
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
291
292
293
        ).images
        image_text2img = text2img(
            [prompt],
294
295
296
            generator=generator,
            num_inference_steps=2,
            output_type="np",
297
        ).images
298

299
300
301
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
302

303

304
305
@slow
class PipelineSlowTests(unittest.TestCase):
306
307
308
309
310
311
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

333
334
335
336
337
338
339
340
341
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
                DiffusionPipeline.from_pretrained(model_id, not_used=True, cache_dir=tmpdirname, force_download=True)

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

342
343
344
345
346
347
348
349
350
351
352
353
354
355
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
356
        ddpm.to(torch_device)
357
        ddpm.set_progress_bar_config(disable=None)
358
359
360
361

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
362
            new_ddpm.to(torch_device)
363
364

        generator = torch.manual_seed(0)
365
        image = ddpm(generator=generator, output_type="numpy").images
366

367
        generator = generator.manual_seed(0)
368
        new_image = new_ddpm(generator=generator, output_type="numpy").images
369
370
371
372
373
374

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

375
        scheduler = DDPMScheduler(num_train_timesteps=10)
376

377
378
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
379
        ddpm.set_progress_bar_config(disable=None)
380
381
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
382
        ddpm_from_hub.set_progress_bar_config(disable=None)
383
384

        generator = torch.manual_seed(0)
385
        image = ddpm(generator=generator, output_type="numpy").images
386

387
        generator = generator.manual_seed(0)
388
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
389
390
391
392
393
394

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

395
396
        scheduler = DDPMScheduler(num_train_timesteps=10)

397
398
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
399
400
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
401
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
402

403
404
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
405
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
406
407

        generator = torch.manual_seed(0)
408
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
409

410
        generator = generator.manual_seed(0)
411
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
412
413
414
415
416
417
418

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
419
        pipe.to(torch_device)
420
        pipe.set_progress_bar_config(disable=None)
421
422

        generator = torch.manual_seed(0)
423
        images = pipe(generator=generator, output_type="numpy").images
424
425
426
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

427
        images = pipe(generator=generator, output_type="pil").images
428
429
430
431
432
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
433
        images = pipe(generator=generator).images
434
435
436
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

437
438
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"
439

440
441
442
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
443

444
445
446
447
448
449
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
450

451
452
        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
453

454
455
        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
456

457
458
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
459

460
461
462
    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"
463

464
465
466
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
467

468
469
470
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
471

472
473
474
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
475

476
477
478
479
480
481
482
        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
483

484
485
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1