attention.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
Kashif Rasul's avatar
Kashif Rasul committed
15
from typing import Optional
16
17

import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
import torch.nn.functional as F
19
20
from torch import nn

Will Berman's avatar
Will Berman committed
21
from ..utils.import_utils import is_xformers_available
22
from .cross_attention import CrossAttention
Kashif Rasul's avatar
Kashif Rasul committed
23
from .embeddings import CombinedTimestepLabelEmbeddings
24
25
26
27
28
29
30
31


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

32

33
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
38
39
40
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
41
42
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
43
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
44
45
46
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
47
48
    """

Will Berman's avatar
Will Berman committed
49
50
    # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore

Patrick von Platen's avatar
Patrick von Platen committed
51
52
    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
53
54
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
55
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
56
57
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
62
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
63
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
64
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
69
70
71

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
72
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
73

74
75
        self._use_memory_efficient_attention_xformers = False

76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

90
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
91
92
93
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
94
95
96
97
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
98
99
100
101
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
102
103
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
104
                )
105
106
107
108
109
110
111
112
113
114
115
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e
        self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
116

Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
123

Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

131
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
132

Suraj Patil's avatar
Suraj Patil committed
133
134
135
136
        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
            hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
157

Suraj Patil's avatar
Suraj Patil committed
158
159
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
160
161

        # compute next hidden_states
162
        hidden_states = self.proj_attn(hidden_states)
Will Berman's avatar
Will Berman committed
163

Patrick von Platen's avatar
Patrick von Platen committed
164
165
166
167
168
169
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
170

Patrick von Platen's avatar
Patrick von Platen committed
171
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
172
173
174
175
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
176
177
178
179
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
180
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
181
182
183
184
185
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
186
187
188
189
190
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
191
192
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
193
        dropout=0.0,
Will Berman's avatar
Will Berman committed
194
195
196
197
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
198
        only_cross_attention: bool = False,
199
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
200
201
202
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
203
    ):
Patrick von Platen's avatar
Patrick von Platen committed
204
        super().__init__()
205
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
206
207
208
209
210
211
212
213
214

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
215
216

        # 1. Self-Attn
Patrick von Platen's avatar
Patrick von Platen committed
217
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
218
219
220
221
222
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
223
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
224
            upcast_attention=upcast_attention,
225
226
        )

Kashif Rasul's avatar
Kashif Rasul committed
227
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Will Berman's avatar
Will Berman committed
228

229
230
231
232
233
234
235
236
237
        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = CrossAttention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
238
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
239
            )  # is self-attn if encoder_hidden_states is none
Will Berman's avatar
Will Berman committed
240
        else:
241
242
            self.attn2 = None

Kashif Rasul's avatar
Kashif Rasul committed
243
244
245
246
247
248
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
249
250

        if cross_attention_dim is not None:
Kashif Rasul's avatar
Kashif Rasul committed
251
252
253
254
255
256
257
258
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
259
260
261
262
        else:
            self.norm2 = None

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
263
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
264

265
266
267
268
269
270
271
    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        attention_mask=None,
        cross_attention_kwargs=None,
Kashif Rasul's avatar
Kashif Rasul committed
272
        class_labels=None,
273
    ):
Kashif Rasul's avatar
Kashif Rasul committed
274
275
276
277
278
279
280
281
282
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

Will Berman's avatar
Will Berman committed
283
        # 1. Self-Attention
284
285
286
287
288
289
290
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
291
292
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
293
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
294

295
296
297
298
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
Kashif Rasul's avatar
Kashif Rasul committed
299
300

            # 2. Cross-Attention
301
302
303
304
305
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
306
            )
307
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
308
309

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
310
311
312
313
314
315
316
317
318
319
320
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        ff_output = self.ff(norm_hidden_states)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
321

322
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
323
324
325


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
326
327
328
329
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
330
331
332
333
334
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
335
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
336
337
338
    """

    def __init__(
Will Berman's avatar
Will Berman committed
339
340
341
342
343
344
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
345
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
346
    ):
Patrick von Platen's avatar
Patrick von Platen committed
347
348
        super().__init__()
        inner_dim = int(dim * mult)
349
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
350

351
352
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
353
354
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
355
356
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
357
        elif activation_fn == "geglu-approximate":
358
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
359
360

        self.net = nn.ModuleList([])
361
        # project in
362
        self.net.append(act_fn)
363
364
365
366
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
367
368
369
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
370

371
    def forward(self, hidden_states):
372
373
374
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
375

Patrick von Platen's avatar
Patrick von Platen committed
376

377
378
class GELU(nn.Module):
    r"""
Kashif Rasul's avatar
Kashif Rasul committed
379
    GELU activation function with tanh approximation support with `approximate="tanh"`.
380
381
    """

Kashif Rasul's avatar
Kashif Rasul committed
382
    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
383
384
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
Kashif Rasul's avatar
Kashif Rasul committed
385
        self.approximate = approximate
386
387
388

    def gelu(self, gate):
        if gate.device.type != "mps":
Kashif Rasul's avatar
Kashif Rasul committed
389
            return F.gelu(gate, approximate=self.approximate)
390
        # mps: gelu is not implemented for float16
Kashif Rasul's avatar
Kashif Rasul committed
391
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
392
393
394
395
396
397
398

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
399
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
400
401
402
403
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
404
405
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
406
407
408
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
409
410
411
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

412
413
414
415
416
417
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

418
419
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
420
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
Kashif Rasul's avatar
Kashif Rasul committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp