"docs/vscode:/vscode.git/clone" did not exist on "3ff39e8e860a952096054a14af8d4125668d5801"
attention.py 31.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
Will Berman's avatar
Will Berman committed
15
from dataclasses import dataclass
Kashif Rasul's avatar
Kashif Rasul committed
16
from typing import Optional
17
18

import torch
Patrick von Platen's avatar
Patrick von Platen committed
19
import torch.nn.functional as F
20
21
from torch import nn

Will Berman's avatar
Will Berman committed
22
23
24
25
26
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available
27
from .cross_attention import CrossAttention
Will Berman's avatar
Will Berman committed
28
29
30
31
32
33
34
35
36
37
38
39


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
            for the unnoised latent pixels.
    """

    sample: torch.FloatTensor
40
41
42
43
44
45
46
47


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

48

Will Berman's avatar
Will Berman committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class Transformer2DModel(ModelMixin, ConfigMixin):
    """
    Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
    embeddings) inputs.

    When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
    transformer action. Finally, reshape to image.

    When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
    embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
    classes of unnoised image.

    Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
    image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
Will Berman's avatar
Will Berman committed
70
71
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
Will Berman's avatar
Will Berman committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
Suraj Patil's avatar
Suraj Patil committed
102
        use_linear_projection: bool = False,
103
        only_cross_attention: bool = False,
104
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
105
106
    ):
        super().__init__()
Suraj Patil's avatar
Suraj Patil committed
107
        self.use_linear_projection = use_linear_projection
Will Berman's avatar
Will Berman committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = in_channels is not None
        self.is_input_vectorized = num_vector_embeds is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized:
            raise ValueError(
                f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Suraj Patil's avatar
Suraj Patil committed
133
134
135
136
            if use_linear_projection:
                self.proj_in = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
162
                    only_cross_attention=only_cross_attention,
163
                    upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
164
165
166
167
168
169
170
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
171
172
173
174
            if use_linear_projection:
                self.proj_out = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
175
176
177
178
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)

179
180
181
182
183
184
185
186
    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        cross_attention_kwargs=None,
        return_dict: bool = True,
    ):
Will Berman's avatar
Will Berman committed
187
188
189
190
191
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
Will Berman's avatar
Will Berman committed
192
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Will Berman's avatar
Will Berman committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        # 1. Input
        if self.is_input_continuous:
207
            batch, channel, height, width = hidden_states.shape
Will Berman's avatar
Will Berman committed
208
            residual = hidden_states
Suraj Patil's avatar
Suraj Patil committed
209

Will Berman's avatar
Will Berman committed
210
            hidden_states = self.norm(hidden_states)
Suraj Patil's avatar
Suraj Patil committed
211
212
213
            if not self.use_linear_projection:
                hidden_states = self.proj_in(hidden_states)
                inner_dim = hidden_states.shape[1]
214
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
Suraj Patil's avatar
Suraj Patil committed
215
216
            else:
                inner_dim = hidden_states.shape[1]
217
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
Suraj Patil's avatar
Suraj Patil committed
218
                hidden_states = self.proj_in(hidden_states)
Will Berman's avatar
Will Berman committed
219
220
221
222
223
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
224
225
226
227
228
229
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                timestep=timestep,
                cross_attention_kwargs=cross_attention_kwargs,
            )
Will Berman's avatar
Will Berman committed
230
231
232

        # 3. Output
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
233
            if not self.use_linear_projection:
234
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
Suraj Patil's avatar
Suraj Patil committed
235
236
237
                hidden_states = self.proj_out(hidden_states)
            else:
                hidden_states = self.proj_out(hidden_states)
238
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
Suraj Patil's avatar
Suraj Patil committed
239

Will Berman's avatar
Will Berman committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)


256
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
260
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
261
262
263
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
264
265
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
266
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
267
268
269
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
270
271
    """

Will Berman's avatar
Will Berman committed
272
273
    # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore

Patrick von Platen's avatar
Patrick von Platen committed
274
275
    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
276
277
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
278
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
279
280
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
281
282
283
284
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
285
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
286
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
287
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
288
289
290
291
292
293
294

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
295
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
296

297
298
        self._use_memory_efficient_attention_xformers = False

299
300
301
302
303
304
305
306
307
308
309
310
311
312
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

313
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
314
315
316
317
318
319
320
321
322
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
                    "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                    " xformers",
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
323
324
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
325
                )
326
327
328
329
330
331
332
333
334
335
336
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e
        self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
337

Patrick von Platen's avatar
Patrick von Platen committed
338
339
340
341
342
343
    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
344

Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
349
350
351
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

352
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
353

Suraj Patil's avatar
Suraj Patil committed
354
355
356
357
        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
            hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
378

Suraj Patil's avatar
Suraj Patil committed
379
380
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
381
382

        # compute next hidden_states
383
        hidden_states = self.proj_attn(hidden_states)
Will Berman's avatar
Will Berman committed
384

Patrick von Platen's avatar
Patrick von Platen committed
385
386
387
388
389
390
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
391

Patrick von Platen's avatar
Patrick von Platen committed
392
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
393
394
395
396
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
397
398
399
400
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
401
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
402
403
404
405
406
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
407
408
409
410
411
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
412
413
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
414
        dropout=0.0,
Will Berman's avatar
Will Berman committed
415
416
417
418
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
419
        only_cross_attention: bool = False,
420
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
421
    ):
Patrick von Platen's avatar
Patrick von Platen committed
422
        super().__init__()
423
        self.only_cross_attention = only_cross_attention
424
425
426
        self.use_ada_layer_norm = num_embeds_ada_norm is not None

        # 1. Self-Attn
Patrick von Platen's avatar
Patrick von Platen committed
427
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
428
429
430
431
432
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
433
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
434
            upcast_attention=upcast_attention,
435
436
        )

Will Berman's avatar
Will Berman committed
437
438
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)

439
440
441
442
443
444
445
446
447
        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = CrossAttention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
448
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
449
            )  # is self-attn if encoder_hidden_states is none
Will Berman's avatar
Will Berman committed
450
        else:
451
452
453
454
455
456
457
458
459
460
            self.attn2 = None

        self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)

        if cross_attention_dim is not None:
            self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
        else:
            self.norm2 = None

        # 3. Feed-forward
Patrick von Platen's avatar
Patrick von Platen committed
461
462
        self.norm3 = nn.LayerNorm(dim)

463
464
465
466
467
468
469
470
    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        attention_mask=None,
        cross_attention_kwargs=None,
    ):
Will Berman's avatar
Will Berman committed
471
472
473
474
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
        )
475
476
477
478
479
480
481
482
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
483

484
485
486
487
488
        if self.attn2 is not None:
            # 2. Cross-Attention
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
489
490
491
492
493
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
494
            )
495
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
496
497

        # 3. Feed-forward
498
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
Will Berman's avatar
Will Berman committed
499

500
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
501
502
503


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
504
505
506
507
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
508
509
510
511
512
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
513
514
515
    """

    def __init__(
Will Berman's avatar
Will Berman committed
516
517
518
519
520
521
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
522
    ):
Patrick von Platen's avatar
Patrick von Platen committed
523
524
        super().__init__()
        inner_dim = int(dim * mult)
525
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
526

527
528
529
530
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
531
        elif activation_fn == "geglu-approximate":
532
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
533
534

        self.net = nn.ModuleList([])
535
        # project in
536
        self.net.append(act_fn)
537
538
539
540
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Patrick von Platen's avatar
Patrick von Platen committed
541

542
    def forward(self, hidden_states):
543
544
545
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
546

Patrick von Platen's avatar
Patrick von Platen committed
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
class GELU(nn.Module):
    r"""
    GELU activation function
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
569
570
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
571
572
573
574
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
575
576
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
577
578
579
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
580
581
582
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

583
584
585
586
587
588
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

589
590
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
591
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
627
628
629
630
631
632
633
634
635
636
637
638
639


class DualTransformer2DModel(nn.Module):
    """
    Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
Will Berman's avatar
Will Berman committed
640
        cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
    ):
        super().__init__()
        self.transformers = nn.ModuleList(
            [
                Transformer2DModel(
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    in_channels=in_channels,
                    num_layers=num_layers,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    attention_bias=attention_bias,
                    sample_size=sample_size,
                    num_vector_embeds=num_vector_embeds,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                )
                for _ in range(2)
            ]
        )

        # Variables that can be set by a pipeline:

        # The ratio of transformer1 to transformer2's output states to be combined during inference
        self.mix_ratio = 0.5

        # The shape of `encoder_hidden_states` is expected to be
        # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
        self.condition_lengths = [77, 257]

        # Which transformer to use to encode which condition.
        # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
        self.transformer_index_for_condition = [1, 0]

Will Berman's avatar
Will Berman committed
705
706
707
    def forward(
        self, hidden_states, encoder_hidden_states, timestep=None, attention_mask=None, return_dict: bool = True
    ):
708
709
710
711
712
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
Will Berman's avatar
Will Berman committed
713
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
714
715
716
717
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
Will Berman's avatar
Will Berman committed
718
719
            attention_mask (`torch.FloatTensor`, *optional*):
                Optional attention mask to be applied in CrossAttention
720
721
722
723
724
725
726
727
728
729
730
731
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        input_states = hidden_states

        encoded_states = []
        tokens_start = 0
732
        # attention_mask is not used yet
733
734
735
736
        for i in range(2):
            # for each of the two transformers, pass the corresponding condition tokens
            condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
            transformer_index = self.transformer_index_for_condition[i]
Will Berman's avatar
Will Berman committed
737
738
739
740
741
742
            encoded_state = self.transformers[transformer_index](
                input_states,
                encoder_hidden_states=condition_state,
                timestep=timestep,
                return_dict=False,
            )[0]
743
744
745
746
747
748
749
750
751
752
            encoded_states.append(encoded_state - input_states)
            tokens_start += self.condition_lengths[i]

        output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
        output_states = output_states + input_states

        if not return_dict:
            return (output_states,)

        return Transformer2DModelOutput(sample=output_states)