scheduling_pndm.py 7.85 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
Patrick von Platen's avatar
Patrick von Platen committed
18

19
20
import numpy as np

Patrick von Platen's avatar
Patrick von Platen committed
21
from ..configuration_utils import ConfigMixin
22
23
24
25
26
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
27
28
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
29

Patrick von Platen's avatar
Patrick von Platen committed
30
31
32
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
33
34
35
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
36

37
38
39
40
41
42
43
44
45
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
52
53
54
55
56
57


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
58
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
63
64
65
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )

        if beta_schedule == "linear":
66
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
67
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
68
            # Glide cosine schedule
69
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
78
79
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
80
81
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
82
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
finish  
Patrick von Platen committed
86
        self.cur_residual = 0
87
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
88
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
89
        self.prk_time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
90
        self.time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
91
        self.set_prk_mode()
Patrick von Platen's avatar
Patrick von Platen committed
92

Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
    def get_prk_time_steps(self, num_inference_steps):
        if num_inference_steps in self.prk_time_steps:
            return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
96

97
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
98

Patrick von Platen's avatar
Patrick von Platen committed
99
        prk_time_steps = np.array(inference_step_times[-self.pndm_order :]).repeat(2) + np.tile(
100
            np.array([0, self.config.timesteps // num_inference_steps // 2]), self.pndm_order
101
        )
Patrick von Platen's avatar
Patrick von Platen committed
102
        self.prk_time_steps[num_inference_steps] = list(reversed(prk_time_steps[:-1].repeat(2)[1:-1]))
Patrick von Platen's avatar
Patrick von Platen committed
103

Patrick von Platen's avatar
Patrick von Platen committed
104
        return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
105

Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
109

110
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
111
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
112

Patrick von Platen's avatar
Patrick von Platen committed
113
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
114

Patrick von Platen's avatar
Patrick von Platen committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    def set_prk_mode(self):
        self.mode = "prk"

    def set_plms_mode(self):
        self.mode = "plms"

    def step(self, *args, **kwargs):
        if self.mode == "prk":
            return self.step_prk(*args, **kwargs)
        if self.mode == "plms":
            return self.step_plms(*args, **kwargs)

        raise ValueError(f"mode {self.mode} does not exist.")

129
    def step_prk(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
130
        prk_time_steps = self.get_prk_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
131

Patrick von Platen's avatar
Patrick von Platen committed
132
133
        t_orig = prk_time_steps[t // 4 * 4]
        t_orig_prev = prk_time_steps[min(t + 1, len(prk_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
134

Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
138
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
142
143
144
145
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
146

Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
150
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

        return self.get_prev_sample(cur_sample, t_orig, t_orig_prev, residual)
Patrick von Platen's avatar
Patrick von Platen committed
151

152
    def step_plms(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
157
158
159
160
        if len(self.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
161
162
        timesteps = self.get_time_steps(num_inference_steps)

Patrick von Platen's avatar
Patrick von Platen committed
163
164
        t_orig = timesteps[t]
        t_orig_prev = timesteps[min(t + 1, len(timesteps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
165
166
167
168
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        return self.get_prev_sample(sample, t_orig, t_orig_prev, residual)

    def get_prev_sample(self, sample, t_orig, t_orig_prev, residual):
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
        # residual -> e_θ(x_t, t)
        # prev_sample -> x_(t−δ)
184
185
        alpha_prod_t = self.alphas_cumprod[t_orig + 1]
        alpha_prod_t_prev = self.alphas_cumprod[t_orig_prev + 1]
Patrick von Platen's avatar
Patrick von Platen committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
        residual_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
        prev_sample = sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * residual / residual_denom_coeff

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
204
205

    def __len__(self):
206
        return self.config.timesteps