attention.py 14.5 KB
Newer Older
1
import math
Kashif Rasul's avatar
Kashif Rasul committed
2
from typing import Optional
3
4

import torch
Patrick von Platen's avatar
Patrick von Platen committed
5
import torch.nn.functional as F
6
7
8
from torch import nn


9
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
10
11
12
13
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
14
15
16
17
18
19
20
21
22
    Uses three q, k, v linear layers to compute attention.

    Parameters:
        channels (:obj:`int`): The number of channels in the input and output.
        num_head_channels (:obj:`int`, *optional*):
            The number of channels in each head. If None, then `num_heads` = 1.
        num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
    """

    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
27
28
29
30
31
        channels: int,
        num_head_channels: Optional[int] = None,
        num_groups: int = 32,
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
35
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
36
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
40
41
42
43
44
45
        self.num_head_size = num_head_channels
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
46
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
47
48

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
49
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
56
57
58
59
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
60

Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
68
69
70
71
72
73
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        # transpose
        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        # get scores
74
        scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
75
        attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale)  # TODO: use baddmm
76
        attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
77
78

        # compute attention output
79
        hidden_states = torch.matmul(attention_probs, value_states)
Patrick von Platen's avatar
Patrick von Platen committed
80

81
82
83
        hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
        new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
        hidden_states = hidden_states.view(new_hidden_states_shape)
Patrick von Platen's avatar
Patrick von Platen committed
84
85

        # compute next hidden_states
86
        hidden_states = self.proj_attn(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
87
88
89
90
91
92
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
93

Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
Kashif Rasul's avatar
Kashif Rasul committed
97
98
99
100
101
102
103
104
105
    standard transformer action. Finally, reshape to image.

    Parameters:
        in_channels (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
Patrick von Platen's avatar
Patrick von Platen committed
106
107
    """

Kashif Rasul's avatar
Kashif Rasul committed
108
109
110
111
112
113
114
    def __init__(
        self,
        in_channels: int,
        n_heads: int,
        d_head: int,
        depth: int = 1,
        dropout: float = 0.0,
115
        num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
116
117
        context_dim: Optional[int] = None,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
118
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
119
120
        self.n_heads = n_heads
        self.d_head = d_head
Patrick von Platen's avatar
Patrick von Platen committed
121
122
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
123
        self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
132
133

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

Patrick von Platen's avatar
Patrick von Platen committed
134
        self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
135

136
137
138
139
    def _set_attention_slice(self, slice_size):
        for block in self.transformer_blocks:
            block._set_attention_slice(slice_size)

140
    def forward(self, hidden_states, context=None):
Patrick von Platen's avatar
Patrick von Platen committed
141
        # note: if no context is given, cross-attention defaults to self-attention
142
143
144
145
        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = self.proj_in(hidden_states)
Yih-Dar's avatar
Yih-Dar committed
146
147
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
148
        for block in self.transformer_blocks:
149
            hidden_states = block(hidden_states, context=context)
Yih-Dar's avatar
Yih-Dar committed
150
        hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
151
152
        hidden_states = self.proj_out(hidden_states)
        return hidden_states + residual
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155


class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    r"""
    A basic Transformer block.

    Parameters:
        dim (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
        gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
        checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
    """

    def __init__(
        self,
        dim: int,
        n_heads: int,
        d_head: int,
        dropout=0.0,
        context_dim: Optional[int] = None,
        gated_ff: bool = True,
        checkpoint: bool = True,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
179
180
181
182
183
184
185
186
187
188
189
190
191
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

192
193
194
195
    def _set_attention_slice(self, slice_size):
        self.attn1._slice_size = slice_size
        self.attn2._slice_size = slice_size

196
197
198
199
200
201
    def forward(self, hidden_states, context=None):
        hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states
        hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states
        hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
202
203
204


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    r"""
    A cross attention layer.

    Parameters:
        query_dim (:obj:`int`): The number of channels in the query.
        context_dim (:obj:`int`, *optional*):
            The number of channels in the context. If not given, defaults to `query_dim`.
        heads (:obj:`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (:obj:`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
    ):
Patrick von Platen's avatar
Patrick von Platen committed
220
221
        super().__init__()
        inner_dim = dim_head * heads
222
        context_dim = context_dim if context_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225

        self.scale = dim_head**-0.5
        self.heads = heads
226
227
228
229
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self._slice_size = None
Patrick von Platen's avatar
Patrick von Platen committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

251
    def forward(self, hidden_states, context=None, mask=None):
252
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
253

254
255
256
257
        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)
Patrick von Platen's avatar
Patrick von Platen committed
258

259
260
        dim = query.shape[-1]

261
262
263
        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
264

265
        # TODO(PVP) - mask is currently never used. Remember to re-implement when used
Patrick von Platen's avatar
Patrick von Platen committed
266
267

        # attention, what we cannot get enough of
268
269
270
271

        if self._slice_size is None or query.shape[0] // self._slice_size == 1:
            hidden_states = self._attention(query, key, value)
        else:
ydshieh's avatar
ydshieh committed
272
            hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
273
274

        return self.to_out(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
275

276
    def _attention(self, query, key, value):
277
278
279
280
281
282
283
        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
284
285
286
287
288
289
290
291
        attention_probs = attention_scores.softmax(dim=-1)
        # compute attention output
        hidden_states = torch.matmul(attention_probs, value)
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
292
293
294
295
296
297
298
299
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
300
301
302
            attn_slice = (
                torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
            )  # TODO: use baddbmm for better performance
303
            attn_slice = attn_slice.softmax(dim=-1)
304
            attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
305
306
307
308
309
310

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
311
312
313


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    r"""
    A feed-forward layer.

    Parameters:
        dim (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
    ):
Patrick von Platen's avatar
Patrick von Platen committed
328
329
        super().__init__()
        inner_dim = int(dim * mult)
330
331
        dim_out = dim_out if dim_out is not None else dim
        project_in = GEGLU(dim, inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
332
333
334

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

335
336
    def forward(self, hidden_states):
        return self.net(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
337

Patrick von Platen's avatar
Patrick von Platen committed
338

Patrick von Platen's avatar
Patrick von Platen committed
339
340
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
341
342
343
344
345
346
347
348
349
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
350
351
352
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

353
354
355
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
        return hidden_states * F.gelu(gate)