resnet.py 27.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
from abc import abstractmethod

import numpy as np
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


48
49
def Normalize(in_channels, num_groups=32, eps=1e-6):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
50
51
52
53
54
55
56
57
58
59


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
63
64
65
66
67
68
69
70
71
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


72
73
74
75
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
76
77
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
78
79
80
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
81
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None):
82
83
84
85
86
87
88
89
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose

        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
90
            self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
91
92
93
94
95
96
97
        elif use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
98

99
100
101
102
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
103

104
105
        if self.use_conv:
            x = self.conv(x)
patil-suraj's avatar
patil-suraj committed
106

107
108
109
110
111
112
113
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
114
115
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
116
117
118
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
119
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
120
121
122
123
124
125
126
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
127
128
        self.name = name

129
        if use_conv:
patil-suraj's avatar
patil-suraj committed
130
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
131
132
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
133
134
135
136
137
138
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
        else:
            self.op = conv
139
140
141
142
143
144

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
145
146
147
148
149

        if self.name == "conv":
            return self.conv(x)
        else:
            return self.op(x)
150
151


Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155
156
157
158
159
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
160
161


Patrick von Platen's avatar
update  
Patrick von Platen committed
162
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py, unet_score_vde.py
163
class ResnetBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
164
165
166
167
168
169
170
171
172
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
173
        groups_out=None,
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
177
        time_embedding_norm="default",
Patrick von Platen's avatar
Patrick von Platen committed
178
        kernel=None,
Patrick von Platen's avatar
Patrick von Platen committed
179
180
        output_scale_factor=1.0,
        use_nin_shortcut=None,
Patrick von Platen's avatar
Patrick von Platen committed
181
182
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
183
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
184
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
185
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
186
        overwrite_for_score_vde=False,
Patrick von Platen's avatar
Patrick von Platen committed
187
    ):
188
189
190
191
192
193
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
194
195
196
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
200
201
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

202
203
204
205
206
207
        if self.pre_norm:
            self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
        else:
            self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
208
209
210

        if time_embedding_norm == "default":
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
Patrick von Platen's avatar
Patrick von Platen committed
211
        elif time_embedding_norm == "scale_shift":
Patrick von Platen's avatar
Patrick von Platen committed
212
213
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

Patrick von Platen's avatar
Patrick von Platen committed
214
        self.norm2 = Normalize(out_channels, num_groups=groups_out, eps=eps)
215
216
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
217

218
219
220
221
        if non_linearity == "swish":
            self.nonlinearity = nonlinearity
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
222
223
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
224

Patrick von Platen's avatar
Patrick von Platen committed
225
226
227
228
229
230
#        if up:
#            self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
#            self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
#        elif down:
#            self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
#            self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
234
235
236
237
238
239
240
241
242

        self.upsample = self.downsample = None
        if self.up and kernel == "fir":
            fir_kernel = (1, 3, 3, 1)
            self.upsample = lambda x: upsample_2d(x, k=fir_kernel)
        elif self.up and kernel is None:
            self.upsample = Upsample(in_channels, use_conv=False, dims=2)
        elif self.down and kernel == "fir":
            fir_kernel = (1, 3, 3, 1)
            self.downsample = lambda x: downsample_2d(x, k=fir_kernel)
        elif self.down and kernel is None:
            self.downsample = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
Patrick von Platen's avatar
Patrick von Platen committed
243

244
        self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
245

246
        self.nin_shortcut = None
Patrick von Platen's avatar
Patrick von Platen committed
247
        if self.use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
248
            self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
249

Patrick von Platen's avatar
Patrick von Platen committed
250
        # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
251
        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
252
        self.overwrite_for_glide = overwrite_for_glide
253
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
254
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
Patrick von Platen's avatar
Patrick von Platen committed
255
        self.overwrite_for_score_vde = overwrite_for_score_vde
256
257
258
259
260
261
262
263
264
265
266
267
268
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
269
270
271
272
273
        elif self.overwrite_for_ldm:
            dims = 2
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False
Patrick von Platen's avatar
Patrick von Platen committed
274
            non_linearity = "silu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
275
276
277
278
279
280
281
282
283
284

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
                conv_nd(dims, channels, self.out_channels, 3, padding=1),
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
285
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
286
287
288
289
290
291
292
293
294
295
296
297
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
                zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
            else:
                self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        elif self.overwrite_for_score_vde:
            in_ch = in_channels
            out_ch = out_channels

            eps = 1e-6
            num_groups = min(in_ch // 4, 32)
            num_groups_out = min(out_ch // 4, 32)
            temb_dim = temb_channels
#            output_scale_factor = np.sqrt(2.0)
#            non_linearity = "silu"
#            use_nin_shortcut = in_channels != out_channels or use_nin_shortcut = True

            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=in_ch, eps=eps)
            self.up = up
            self.down = down
            self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
            if temb_dim is not None:
                self.Dense_0 = nn.Linear(temb_dim, out_ch)
                self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
                nn.init.zeros_(self.Dense_0.bias)

            self.GroupNorm_1 = nn.GroupNorm(num_groups=num_groups_out, num_channels=out_ch, eps=eps)
            self.Dropout_0 = nn.Dropout(dropout)
            self.Conv_1 = conv2d(out_ch, out_ch, init_scale=0.0, kernel_size=3, padding=1)
            if in_ch != out_ch or up or down:
                # 1x1 convolution with DDPM initialization.
                self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)

#            self.skip_rescale = skip_rescale
            self.in_ch = in_ch
            self.out_ch = out_ch

            # TODO(Patrick) - move to main init
            self.is_overwritten = False
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    def set_weights_score_vde(self):
        self.conv1.weight.data = self.Conv_0.weight.data
        self.conv1.bias.data = self.Conv_0.bias.data
        self.norm1.weight.data = self.GroupNorm_0.weight.data
        self.norm1.bias.data = self.GroupNorm_0.bias.data

        self.conv2.weight.data = self.Conv_1.weight.data
        self.conv2.bias.data = self.Conv_1.bias.data
        self.norm2.weight.data = self.GroupNorm_1.weight.data
        self.norm2.bias.data = self.GroupNorm_1.bias.data

        self.temb_proj.weight.data = self.Dense_0.weight.data
        self.temb_proj.bias.data = self.Dense_0.bias.data

        if self.in_channels != self.out_channels or self.up or self.down:
            self.nin_shortcut.weight.data = self.Conv_2.weight.data
            self.nin_shortcut.bias.data = self.Conv_2.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
389
    def forward(self, x, temb, mask=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
390
391
        # TODO(Patrick) eventually this class should be split into multiple classes
        # too many if else statements
392
393
394
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
Patrick von Platen's avatar
up  
Patrick von Platen committed
395
396
397
        elif self.overwrite_for_ldm and not self.is_overwritten:
            self.set_weights_ldm()
            self.is_overwritten = True
Patrick von Platen's avatar
Patrick von Platen committed
398
399
400
        elif self.overwrite_for_score_vde and not self.is_overwritten:
            self.set_weights_score_vde()
            self.is_overwritten = True
401
402

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
403
        h = h * mask
404
405
406
407
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
412
413
        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)
Patrick von Platen's avatar
Patrick von Platen committed
414

415
416
417
418
419
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
420
        h = h * mask
421

Patrick von Platen's avatar
Patrick von Platen committed
422
        temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
Patrick von Platen's avatar
Patrick von Platen committed
423

Patrick von Platen's avatar
Patrick von Platen committed
424
425
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
426
427

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
428
            h = h + h * scale + shift
429
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
430
431
432
433
434
435
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
436
437
438
439
440
441
442

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
443
        h = h * mask
444

Patrick von Platen's avatar
up  
Patrick von Platen committed
445
        x = x * mask
Patrick von Platen's avatar
Patrick von Platen committed
446
        if self.nin_shortcut is not None:
Patrick von Platen's avatar
Patrick von Platen committed
447
            x = self.nin_shortcut(x)
448

449
        return (x + h) / self.output_scale_factor
450
451


Patrick von Platen's avatar
finish  
Patrick von Platen committed
452
# TODO(Patrick) - just there to convert the weights; can delete afterward
453
454
455
456
457
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        )


# unet_score_estimation.py
class ResnetBlockBigGANpp(nn.Module):
    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        up=False,
        down=False,
        dropout=0.1,
        fir_kernel=(1, 3, 3, 1),
        skip_rescale=True,
        init_scale=0.0,
    ):
        super().__init__()

        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.up = up
        self.down = down
        self.fir_kernel = fir_kernel

patil-suraj's avatar
patil-suraj committed
484
        self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
485
486
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
patil-suraj's avatar
patil-suraj committed
487
            self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
Patrick von Platen's avatar
Patrick von Platen committed
488
489
490
491
            nn.init.zeros_(self.Dense_0.bias)

        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
patil-suraj's avatar
patil-suraj committed
492
        self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
493
        if in_ch != out_ch or up or down:
patil-suraj's avatar
style  
patil-suraj committed
494
            # 1x1 convolution with DDPM initialization.
patil-suraj's avatar
patil-suraj committed
495
            self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
496
497
498
499
500
501
502
503
504
505

        self.skip_rescale = skip_rescale
        self.act = act
        self.in_ch = in_ch
        self.out_ch = out_ch

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))

        if self.up:
506
507
            h = upsample_2d(h, self.fir_kernel, factor=2)
            x = upsample_2d(x, self.fir_kernel, factor=2)
Patrick von Platen's avatar
Patrick von Platen committed
508
        elif self.down:
509
510
            h = downsample_2d(h, self.fir_kernel, factor=2)
            x = downsample_2d(x, self.fir_kernel, factor=2)
Patrick von Platen's avatar
Patrick von Platen committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

        h = self.Conv_0(h)
        # Add bias to each feature map conditioned on the time embedding
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)

        if self.in_ch != self.out_ch or self.up or self.down:
            x = self.Conv_2(x)

        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)


529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
562
563
564
565
# HELPER Modules


def normalization(channels, swish=0.0):
566
    """
Patrick von Platen's avatar
Patrick von Platen committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
598
    """
Patrick von Platen's avatar
Patrick von Platen committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
615
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
616
617
618
619
620
621
622
623
624
625

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
626
627

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
642
        else:
Patrick von Platen's avatar
Patrick von Platen committed
643
644
645
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


patil-suraj's avatar
patil-suraj committed
646
647
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
    """nXn convolution with DDPM initialization."""
patil-suraj's avatar
style  
patil-suraj committed
648
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
patil-suraj's avatar
patil-suraj committed
649
    conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
Patrick von Platen's avatar
Patrick von Platen committed
650
651
652
653
    nn.init.zeros_(conv.bias)
    return conv


patil-suraj's avatar
patil-suraj committed
654
def variance_scaling(scale=1.0, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
Patrick von Platen's avatar
Patrick von Platen committed
655
    """Ported from JAX."""
patil-suraj's avatar
patil-suraj committed
656
    scale = 1e-10 if scale == 0 else scale
Patrick von Platen's avatar
Patrick von Platen committed
657
658
659
660
661
662
663
664
665

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
patil-suraj's avatar
patil-suraj committed
666
        denominator = (fan_in + fan_out) / 2
Patrick von Platen's avatar
Patrick von Platen committed
667
        variance = scale / denominator
patil-suraj's avatar
patil-suraj committed
668
        return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
669

Patrick von Platen's avatar
Patrick von Platen committed
670
    return init
671
672


Patrick von Platen's avatar
Patrick von Platen committed
673
674
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
675
676


Patrick von Platen's avatar
Patrick von Platen committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k