unet_2d_condition.py 37.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.nn.functional as F
20
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..loaders import UNet2DConditionLoadersMixin
24
from ..utils import BaseOutput, logging
25
from .attention_processor import AttentionProcessor, AttnProcessor
Patrick von Platen's avatar
Patrick von Platen committed
26
from .embeddings import GaussianFourierProjection, TextTimeEmbedding, TimestepEmbedding, Timesteps
27
from .modeling_utils import ModelMixin
28
from .unet_2d_blocks import (
29
30
31
32
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
33
    UNetMidBlock2DSimpleCrossAttn,
34
35
36
37
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
38
39


40
41
42
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


43
44
45
46
47
48
49
50
51
52
53
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


54
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
55
56
57
58
59
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
60
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
61
62

    Parameters:
63
64
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
65
66
67
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
68
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
69
70
71
72
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
73
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
74
75
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
            mid block layer if `None`.
Kashif Rasul's avatar
Kashif Rasul committed
76
77
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
78
79
80
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
81
82
83
84
85
86
87
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
88
            If `None`, it will skip the normalization and activation layers in post-processing
Kashif Rasul's avatar
Kashif Rasul committed
89
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
90
91
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
William Berman's avatar
William Berman committed
92
93
        encoder_hid_dim (`int`, *optional*, defaults to None):
            If given, `encoder_hidden_states` will be projected from this dimension to `cross_attention_dim`.
Kashif Rasul's avatar
Kashif Rasul committed
94
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
95
96
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
97
98
        class_embed_type (`str`, *optional*, defaults to None):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
99
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
        addition_embed_type (`str`, *optional*, defaults to None):
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
103
104
105
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
106
107
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Patrick von Platen's avatar
Patrick von Platen committed
108
109
        time_embedding_dim (`int`, *optional*, default to `None`):
            An optional override for the dimension of the projected time embedding.
110
111
112
        time_embedding_act_fn (`str`, *optional*, default to `None`):
            Optional activation function to use on the time embeddings only one time before they as passed to the rest
            of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`.
113
114
115
116
117
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
118
119
120
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
121
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
122
123
124
125
126
127
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the
            `only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. Else, it will
            default to `False`.
Kashif Rasul's avatar
Kashif Rasul committed
128
129
    """

130
131
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
135
136
137
138
139
140
141
142
143
144
145
146
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
147
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
148
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
149
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
150
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
151
        layers_per_block: Union[int, Tuple[int]] = 2,
Sid Sahai's avatar
Sid Sahai committed
152
153
154
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
155
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
156
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
157
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
William Berman's avatar
William Berman committed
158
        encoder_hid_dim: Optional[int] = None,
Suraj Patil's avatar
Suraj Patil committed
159
        attention_head_dim: Union[int, Tuple[int]] = 8,
160
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
161
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
162
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
163
        addition_embed_type: Optional[str] = None,
164
        num_class_embeds: Optional[int] = None,
165
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
166
        resnet_time_scale_shift: str = "default",
167
168
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
169
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
170
        time_embedding_dim: Optional[int] = None,
171
        time_embedding_act_fn: Optional[str] = None,
172
173
174
175
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
176
        projection_class_embeddings_input_dim: Optional[int] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
177
        class_embeddings_concat: bool = False,
178
        mid_block_only_cross_attention: Optional[bool] = None,
179
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
180
        addition_embed_type_num_heads=64,
Patrick von Platen's avatar
Patrick von Platen committed
181
182
183
184
185
    ):
        super().__init__()

        self.sample_size = sample_size

Will Berman's avatar
Will Berman committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
207
208
209
210
211
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

212
213
214
215
216
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
217
        # input
218
219
220
221
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
222
223

        # time
224
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
225
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
226
227
228
229
230
231
232
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
233
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
234
235
236
237
238

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
239
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
240
            )
Patrick von Platen's avatar
Patrick von Platen committed
241

242
243
244
245
246
247
248
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
249

William Berman's avatar
William Berman committed
250
251
252
253
254
        if encoder_hid_dim is not None:
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
        else:
            self.encoder_hid_proj = None

255
        # class embedding
Will Berman's avatar
Will Berman committed
256
        if class_embed_type is None and num_class_embeds is not None:
257
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
258
        elif class_embed_type == "timestep":
259
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
260
261
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
262
263
264
265
266
267
268
269
270
271
272
273
274
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
275
276
277
278
279
280
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
281
282
        else:
            self.class_embedding = None
283

Patrick von Platen's avatar
Patrick von Platen committed
284
285
286
287
288
289
290
291
292
293
294
295
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
        elif addition_embed_type is not None:
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None or 'text'.")

296
297
298
299
300
301
302
303
304
305
306
307
308
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        elif time_embedding_act_fn == "swish":
            self.time_embed_act = lambda x: F.silu(x)
        elif time_embedding_act_fn == "mish":
            self.time_embed_act = nn.Mish()
        elif time_embedding_act_fn == "silu":
            self.time_embed_act = nn.SiLU()
        elif time_embedding_act_fn == "gelu":
            self.time_embed_act = nn.GELU()
        else:
            raise ValueError(f"Unsupported activation function: {time_embedding_act_fn}")

Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

312
        if isinstance(only_cross_attention, bool):
313
314
315
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

316
317
            only_cross_attention = [only_cross_attention] * len(down_block_types)

318
319
320
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

Suraj Patil's avatar
Suraj Patil committed
321
322
323
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
324
325
326
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

327
328
329
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
330
331
332
333
334
335
336
337
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
338
339
340
341
342
343
344
345
346
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
347
                num_layers=layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
348
349
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
350
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
351
352
353
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
354
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
355
                cross_attention_dim=cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
356
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
357
                downsample_padding=downsample_padding,
358
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
359
                use_linear_projection=use_linear_projection,
360
                only_cross_attention=only_cross_attention[i],
361
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
362
                resnet_time_scale_shift=resnet_time_scale_shift,
363
364
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
365
                cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
366
367
368
369
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
370
371
372
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
373
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
374
375
376
377
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
378
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
379
380
381
382
383
384
385
386
387
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
388
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
389
390
391
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
392
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
393
394
395
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
396
                skip_time_act=resnet_skip_time_act,
397
                only_cross_attention=mid_block_only_cross_attention,
398
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
399
            )
400
401
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
402
403
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
404

405
406
407
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
408
409
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
410
        reversed_attention_head_dim = list(reversed(attention_head_dim))
411
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
412
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
413
        only_cross_attention = list(reversed(only_cross_attention))
414

Patrick von Platen's avatar
Patrick von Platen committed
415
416
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
417
418
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
419
420
421
422
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

423
424
425
426
427
428
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
429
430
431

            up_block = get_up_block(
                up_block_type,
432
                num_layers=reversed_layers_per_block[i] + 1,
Patrick von Platen's avatar
Patrick von Platen committed
433
434
435
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
436
                temb_channels=blocks_time_embed_dim,
437
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
438
439
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
440
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
441
                cross_attention_dim=reversed_cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
442
                attn_num_head_channels=reversed_attention_head_dim[i],
443
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
444
                use_linear_projection=use_linear_projection,
445
                only_cross_attention=only_cross_attention[i],
446
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
447
                resnet_time_scale_shift=resnet_time_scale_shift,
448
449
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
450
                cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
451
452
453
454
455
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
456
457
458
459
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
460
461
462
463
464
465
466
467
468
469
470
471

            if act_fn == "swish":
                self.conv_act = lambda x: F.silu(x)
            elif act_fn == "mish":
                self.conv_act = nn.Mish()
            elif act_fn == "silu":
                self.conv_act = nn.SiLU()
            elif act_fn == "gelu":
                self.conv_act = nn.GELU()
            else:
                raise ValueError(f"Unsupported activation function: {act_fn}")

472
473
474
475
476
477
478
479
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
480

481
    @property
Patrick von Platen's avatar
Patrick von Platen committed
482
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
483
484
485
486
487
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
488
        # set recursively
489
490
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
491
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
492
493
494
495
496
497
498
499
500
501
502
503
504
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
505
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
506
507
        r"""
        Parameters:
Patrick von Platen's avatar
Patrick von Platen committed
508
            `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
509
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Patrick von Platen's avatar
Patrick von Platen committed
510
                of **all** `Attention` layers.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
511
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
512
513
514
515
516
517
518
519
520
521
522

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
523
            if hasattr(module, "set_processor"):
524
525
526
527
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
528

529
530
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
531

532
533
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
534

535
536
537
538
539
540
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

541
    def set_attention_slice(self, slice_size):
542
543
        r"""
        Enable sliced attention computation.
544

545
546
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
547

548
549
550
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
551
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
552
553
554
555
556
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
557
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
558
559
560
561
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
562
                fn_recursive_retrieve_sliceable_dims(child)
563
564
565

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
566
            fn_recursive_retrieve_sliceable_dims(module)
567

Alexander Pivovarov's avatar
Alexander Pivovarov committed
568
        num_sliceable_layers = len(sliceable_head_dims)
569
570
571
572
573
574
575

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
576
            slice_size = num_sliceable_layers * [1]
577

Alexander Pivovarov's avatar
Alexander Pivovarov committed
578
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
579
580
581
582
583
584

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
605

606
607
608
609
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
614
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
615
        class_labels: Optional[torch.Tensor] = None,
616
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
617
        attention_mask: Optional[torch.Tensor] = None,
618
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
619
620
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
621
622
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
623
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
624
625
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
626
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
627
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
628
629
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
630
            cross_attention_kwargs (`dict`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
631
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
632
633
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Kashif Rasul's avatar
Kashif Rasul committed
634
635
636
637
638
639

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
640
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
641
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
642
643
644
645
646
647
648
649
650
651
652
653
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Will Berman's avatar
Will Berman committed
654
655
656
657
658
        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
659
660
661
662
663
664
665
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
666
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
667
668
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
669
            if isinstance(timestep, float):
670
671
672
673
674
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
675
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
676

677
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
678
        timesteps = timesteps.expand(sample.shape[0])
679

Patrick von Platen's avatar
Patrick von Platen committed
680
        t_emb = self.time_proj(timesteps)
681

682
        # `Timesteps` does not contain any weights and will always return f32 tensors
683
684
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
685
        t_emb = t_emb.to(dtype=sample.dtype)
686
687

        emb = self.time_embedding(t_emb, timestep_cond)
Patrick von Platen's avatar
Patrick von Platen committed
688

Will Berman's avatar
Will Berman committed
689
        if self.class_embedding is not None:
690
691
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
692
693
694
695

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

696
697
698
699
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

700
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
701
702
703
704
705

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
706

Patrick von Platen's avatar
Patrick von Platen committed
707
708
709
710
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
            emb = emb + aug_emb

711
712
713
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

William Berman's avatar
William Berman committed
714
715
716
        if self.encoder_hid_proj is not None:
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
717
718
719
720
721
722
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
723
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
724
                sample, res_samples = downsample_block(
725
726
727
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
728
                    attention_mask=attention_mask,
729
                    cross_attention_kwargs=cross_attention_kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
730
731
732
733
734
735
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

736
737
738
739
740
741
        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
742
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
743
744
745
746
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
747
        # 4. mid
748
749
750
751
752
753
754
755
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )
Patrick von Platen's avatar
Patrick von Platen committed
756

757
        if mid_block_additional_residual is not None:
758
            sample = sample + mid_block_additional_residual
759

Patrick von Platen's avatar
Patrick von Platen committed
760
        # 5. up
761
762
763
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
764
765
766
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

767
768
769
770
771
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

772
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
773
774
775
776
777
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
778
                    cross_attention_kwargs=cross_attention_kwargs,
779
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
780
                    attention_mask=attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
781
782
                )
            else:
783
784
785
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
786

Patrick von Platen's avatar
Patrick von Platen committed
787
        # 6. post-process
788
789
790
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
791
792
        sample = self.conv_out(sample)

793
794
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
795

796
        return UNet2DConditionOutput(sample=sample)