unet_2d_condition.py 43.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.nn.functional as F
20
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..loaders import UNet2DConditionLoadersMixin
24
from ..utils import BaseOutput, logging
25
from .attention_processor import AttentionProcessor, AttnProcessor
YiYi Xu's avatar
YiYi Xu committed
26
27
28
29
30
31
32
33
from .embeddings import (
    GaussianFourierProjection,
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
34
from .modeling_utils import ModelMixin
35
from .unet_2d_blocks import (
36
37
38
39
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
40
    UNetMidBlock2DSimpleCrossAttn,
41
42
43
44
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
45
46


47
48
49
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


50
51
52
53
54
55
56
57
58
59
60
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


61
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
62
63
64
65
66
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
67
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
68
69

    Parameters:
70
71
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
72
73
74
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
75
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
76
77
78
79
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
80
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
81
82
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
            mid block layer if `None`.
Kashif Rasul's avatar
Kashif Rasul committed
83
84
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
85
86
87
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
88
89
90
91
92
93
94
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
95
            If `None`, it will skip the normalization and activation layers in post-processing
Kashif Rasul's avatar
Kashif Rasul committed
96
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
97
98
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
William Berman's avatar
William Berman committed
99
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
100
101
102
103
104
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
        encoder_hid_dim_type (`str`, *optional*, defaults to None):
            If given, the `encoder_hidden_states` and potentially other embeddings will be down-projected to text
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
Kashif Rasul's avatar
Kashif Rasul committed
105
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
106
107
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
108
109
        class_embed_type (`str`, *optional*, defaults to None):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
110
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Patrick von Platen's avatar
Patrick von Platen committed
111
112
113
        addition_embed_type (`str`, *optional*, defaults to None):
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
114
115
116
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
117
118
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Patrick von Platen's avatar
Patrick von Platen committed
119
120
        time_embedding_dim (`int`, *optional*, default to `None`):
            An optional override for the dimension of the projected time embedding.
121
122
123
        time_embedding_act_fn (`str`, *optional*, default to `None`):
            Optional activation function to use on the time embeddings only one time before they as passed to the rest
            of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`.
124
125
126
127
128
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
129
130
131
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
132
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
133
134
135
136
137
138
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the
            `only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. Else, it will
            default to `False`.
Kashif Rasul's avatar
Kashif Rasul committed
139
140
    """

141
142
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
146
147
148
149
150
151
152
153
154
155
156
157
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
158
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
159
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
160
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
161
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
162
        layers_per_block: Union[int, Tuple[int]] = 2,
Sid Sahai's avatar
Sid Sahai committed
163
164
165
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
166
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
167
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
168
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
William Berman's avatar
William Berman committed
169
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
170
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
171
        attention_head_dim: Union[int, Tuple[int]] = 8,
172
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
173
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
174
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
175
        addition_embed_type: Optional[str] = None,
176
        num_class_embeds: Optional[int] = None,
177
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
178
        resnet_time_scale_shift: str = "default",
179
180
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
181
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
182
        time_embedding_dim: Optional[int] = None,
183
        time_embedding_act_fn: Optional[str] = None,
184
185
186
187
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
188
        projection_class_embeddings_input_dim: Optional[int] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
189
        class_embeddings_concat: bool = False,
190
        mid_block_only_cross_attention: Optional[bool] = None,
191
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
192
        addition_embed_type_num_heads=64,
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
196
197
    ):
        super().__init__()

        self.sample_size = sample_size

Will Berman's avatar
Will Berman committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
219
220
221
222
223
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

224
225
226
227
228
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
229
        # input
230
231
232
233
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
234
235

        # time
236
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
237
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
238
239
240
241
242
243
244
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
245
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
246
247
248
249
250

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
251
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
252
            )
Patrick von Platen's avatar
Patrick von Platen committed
253

254
255
256
257
258
259
260
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
261

YiYi Xu's avatar
YiYi Xu committed
262
263
264
265
266
267
268
269
270
271
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
272
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )

        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
287
288
289
        else:
            self.encoder_hid_proj = None

290
        # class embedding
Will Berman's avatar
Will Berman committed
291
        if class_embed_type is None and num_class_embeds is not None:
292
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
293
        elif class_embed_type == "timestep":
294
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
295
296
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
297
298
299
300
301
302
303
304
305
306
307
308
309
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
310
311
312
313
314
315
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
316
317
        else:
            self.class_embedding = None
318

Patrick von Platen's avatar
Patrick von Platen committed
319
320
321
322
323
324
325
326
327
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
328
329
330
331
332
333
334
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
Patrick von Platen's avatar
Patrick von Platen committed
335
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
336
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
337

338
339
340
341
342
343
344
345
346
347
348
349
350
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        elif time_embedding_act_fn == "swish":
            self.time_embed_act = lambda x: F.silu(x)
        elif time_embedding_act_fn == "mish":
            self.time_embed_act = nn.Mish()
        elif time_embedding_act_fn == "silu":
            self.time_embed_act = nn.SiLU()
        elif time_embedding_act_fn == "gelu":
            self.time_embed_act = nn.GELU()
        else:
            raise ValueError(f"Unsupported activation function: {time_embedding_act_fn}")

Patrick von Platen's avatar
Patrick von Platen committed
351
352
353
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

354
        if isinstance(only_cross_attention, bool):
355
356
357
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

358
359
            only_cross_attention = [only_cross_attention] * len(down_block_types)

360
361
362
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

Suraj Patil's avatar
Suraj Patil committed
363
364
365
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
366
367
368
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

369
370
371
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
372
373
374
375
376
377
378
379
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
383
384
385
386
387
388
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
389
                num_layers=layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
390
391
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
392
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
396
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
397
                cross_attention_dim=cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
398
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
399
                downsample_padding=downsample_padding,
400
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
401
                use_linear_projection=use_linear_projection,
402
                only_cross_attention=only_cross_attention[i],
403
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
404
                resnet_time_scale_shift=resnet_time_scale_shift,
405
406
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
407
                cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
412
413
414
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
415
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
416
417
418
419
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
420
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
421
422
423
424
425
426
427
428
429
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
430
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
431
432
433
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
434
                cross_attention_dim=cross_attention_dim[-1],
Will Berman's avatar
Will Berman committed
435
436
437
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
438
                skip_time_act=resnet_skip_time_act,
439
                only_cross_attention=mid_block_only_cross_attention,
440
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
441
            )
442
443
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
444
445
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
446

447
448
449
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
450
451
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
452
        reversed_attention_head_dim = list(reversed(attention_head_dim))
453
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
454
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
455
        only_cross_attention = list(reversed(only_cross_attention))
456

Patrick von Platen's avatar
Patrick von Platen committed
457
458
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
459
460
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
461
462
463
464
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

465
466
467
468
469
470
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
471
472
473

            up_block = get_up_block(
                up_block_type,
474
                num_layers=reversed_layers_per_block[i] + 1,
Patrick von Platen's avatar
Patrick von Platen committed
475
476
477
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
478
                temb_channels=blocks_time_embed_dim,
479
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
480
481
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
482
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
483
                cross_attention_dim=reversed_cross_attention_dim[i],
Suraj Patil's avatar
Suraj Patil committed
484
                attn_num_head_channels=reversed_attention_head_dim[i],
485
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
486
                use_linear_projection=use_linear_projection,
487
                only_cross_attention=only_cross_attention[i],
488
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
489
                resnet_time_scale_shift=resnet_time_scale_shift,
490
491
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
492
                cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
493
494
495
496
497
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
498
499
500
501
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
502
503
504
505
506
507
508
509
510
511
512
513

            if act_fn == "swish":
                self.conv_act = lambda x: F.silu(x)
            elif act_fn == "mish":
                self.conv_act = nn.Mish()
            elif act_fn == "silu":
                self.conv_act = nn.SiLU()
            elif act_fn == "gelu":
                self.conv_act = nn.GELU()
            else:
                raise ValueError(f"Unsupported activation function: {act_fn}")

514
515
516
517
518
519
520
521
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
522

523
    @property
Patrick von Platen's avatar
Patrick von Platen committed
524
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
525
526
527
528
529
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
530
        # set recursively
531
532
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
533
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
534
535
536
537
538
539
540
541
542
543
544
545
546
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
547
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
548
549
        r"""
        Parameters:
Patrick von Platen's avatar
Patrick von Platen committed
550
            `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
551
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Patrick von Platen's avatar
Patrick von Platen committed
552
                of **all** `Attention` layers.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
553
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
554
555
556
557
558
559
560
561
562
563
564

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
565
            if hasattr(module, "set_processor"):
566
567
568
569
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
570

571
572
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
573

574
575
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
576

577
578
579
580
581
582
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

583
    def set_attention_slice(self, slice_size):
584
585
        r"""
        Enable sliced attention computation.
586

587
588
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
589

590
591
592
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
593
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
594
595
596
597
598
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
599
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
600
601
602
603
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
604
                fn_recursive_retrieve_sliceable_dims(child)
605
606
607

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
608
            fn_recursive_retrieve_sliceable_dims(module)
609

Alexander Pivovarov's avatar
Alexander Pivovarov committed
610
        num_sliceable_layers = len(sliceable_head_dims)
611
612
613
614
615
616
617

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
618
            slice_size = num_sliceable_layers * [1]
619

Alexander Pivovarov's avatar
Alexander Pivovarov committed
620
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
621
622
623
624
625
626

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
647

648
649
650
651
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
652
653
654
655
656
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
657
        class_labels: Optional[torch.Tensor] = None,
658
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
659
        attention_mask: Optional[torch.Tensor] = None,
660
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
661
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
662
663
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
664
        encoder_attention_mask: Optional[torch.Tensor] = None,
665
666
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
667
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
668
669
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
670
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
671
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
672
673
674
675
            encoder_attention_mask (`torch.Tensor`):
                (batch, sequence_length) cross-attention mask, applied to encoder_hidden_states. True = keep, False =
                discard. Mask will be converted into a bias, which adds large negative values to attention scores
                corresponding to "discard" tokens.
Kashif Rasul's avatar
Kashif Rasul committed
676
677
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
678
            cross_attention_kwargs (`dict`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
679
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
680
681
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
YiYi Xu's avatar
YiYi Xu committed
682
683
684
685
            added_cond_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified includes additonal conditions that can be used for additonal time
                embeddings or encoder hidden states projections. See the configurations `encoder_hid_dim_type` and
                `addition_embed_type` for more information.
Kashif Rasul's avatar
Kashif Rasul committed
686
687
688
689
690
691

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
692
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
693
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
694
695
696
697
698
699
700
701
702
703
704
705
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

706
707
708
709
710
711
712
713
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
714
        if attention_mask is not None:
715
716
717
718
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
719
720
721
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

722
723
724
725
726
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
727
728
729
730
731
732
733
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
734
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
735
736
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
737
            if isinstance(timestep, float):
738
739
740
741
742
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
743
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
744

745
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
746
        timesteps = timesteps.expand(sample.shape[0])
747

Patrick von Platen's avatar
Patrick von Platen committed
748
        t_emb = self.time_proj(timesteps)
749

750
        # `Timesteps` does not contain any weights and will always return f32 tensors
751
752
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
753
        t_emb = t_emb.to(dtype=sample.dtype)
754
755

        emb = self.time_embedding(t_emb, timestep_cond)
Patrick von Platen's avatar
Patrick von Platen committed
756

Will Berman's avatar
Will Berman committed
757
        if self.class_embedding is not None:
758
759
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
760
761
762
763

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

764
765
766
767
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

768
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
769
770
771
772
773

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
774

Patrick von Platen's avatar
Patrick von Platen committed
775
776
777
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
            emb = emb + aug_emb
YiYi Xu's avatar
YiYi Xu committed
778
779
780
781
782
783
784
785
786
787
788
789
        elif self.config.addition_embed_type == "text_image":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)

            aug_emb = self.add_embedding(text_embs, image_embs)
            emb = emb + aug_emb
Patrick von Platen's avatar
Patrick von Platen committed
790

791
792
793
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
794
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
795
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
796
797
798
799
800
801
802
803
804
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
William Berman's avatar
William Berman committed
805

Patrick von Platen's avatar
Patrick von Platen committed
806
807
808
809
810
811
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
812
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
813
                sample, res_samples = downsample_block(
814
815
816
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
817
                    attention_mask=attention_mask,
818
                    cross_attention_kwargs=cross_attention_kwargs,
819
                    encoder_attention_mask=encoder_attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
820
821
822
823
824
825
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

826
827
828
829
830
831
        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
832
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
833
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
834
835
836

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
837
        # 4. mid
838
839
840
841
842
843
844
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
845
                encoder_attention_mask=encoder_attention_mask,
846
            )
Patrick von Platen's avatar
Patrick von Platen committed
847

848
        if mid_block_additional_residual is not None:
849
            sample = sample + mid_block_additional_residual
850

Patrick von Platen's avatar
Patrick von Platen committed
851
        # 5. up
852
853
854
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
855
856
857
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

858
859
860
861
862
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

863
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
864
865
866
867
868
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
869
                    cross_attention_kwargs=cross_attention_kwargs,
870
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
871
                    attention_mask=attention_mask,
872
                    encoder_attention_mask=encoder_attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
873
874
                )
            else:
875
876
877
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
878

Patrick von Platen's avatar
Patrick von Platen committed
879
        # 6. post-process
880
881
882
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
883
884
        sample = self.conv_out(sample)

885
886
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
887

888
        return UNet2DConditionOutput(sample=sample)