resnext.py 7.06 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
import math

import torch.nn as nn

yhcao6's avatar
yhcao6 committed
5
from mmdet.ops import DeformConv, ModulatedDeformConv
pangjm's avatar
pangjm committed
6
from .resnet import Bottleneck as _Bottleneck
yhcao6's avatar
yhcao6 committed
7
from .resnet import ResNet
Kai Chen's avatar
Kai Chen committed
8
from ..registry import BACKBONES
ThangVu's avatar
ThangVu committed
9
from ..utils import build_norm_layer
pangjm's avatar
pangjm committed
10
11


pangjm's avatar
pangjm committed
12
class Bottleneck(_Bottleneck):
pangjm's avatar
pangjm committed
13

pangjm's avatar
pangjm committed
14
    def __init__(self, *args, groups=1, base_width=4, **kwargs):
pangjm's avatar
pangjm committed
15
        """Bottleneck block for ResNeXt.
pangjm's avatar
pangjm committed
16
17
18
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
pangjm's avatar
pangjm committed
19
        super(Bottleneck, self).__init__(*args, **kwargs)
pangjm's avatar
pangjm committed
20

pangjm's avatar
pangjm committed
21
        if groups == 1:
pangjm's avatar
pangjm committed
22
            width = self.planes
pangjm's avatar
pangjm committed
23
        else:
pangjm's avatar
pangjm committed
24
            width = math.floor(self.planes * (base_width / 64)) * groups
pangjm's avatar
pangjm committed
25

yhcao6's avatar
yhcao6 committed
26
27
28
29
30
31
        self.norm1_name, norm1 = build_norm_layer(
            self.normalize, width, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            self.normalize, width, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            self.normalize, self.planes * self.expansion, postfix=3)
ThangVu's avatar
ThangVu committed
32

pangjm's avatar
pangjm committed
33
        self.conv1 = nn.Conv2d(
pangjm's avatar
pangjm committed
34
35
36
37
38
            self.inplanes,
            width,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
39
        self.add_module(self.norm1_name, norm1)
yhcao6's avatar
yhcao6 committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.get('fallback_on_stride', False)
            self.with_modulated_dcn = self.dcn.get('modulated', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = nn.Conv2d(
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                bias=False)
        else:
56
            groups = self.dcn.get('groups', 1)
yhcao6's avatar
yhcao6 committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
            deformable_groups = self.dcn.get('deformable_groups', 1)
            if not self.with_modulated_dcn:
                conv_op = DeformConv
                offset_channels = 18
            else:
                conv_op = ModulatedDeformConv
                offset_channels = 27
            self.conv2_offset = nn.Conv2d(
                width,
                deformable_groups * offset_channels,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation)
            self.conv2 = conv_op(
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                deformable_groups=deformable_groups,
                bias=False)
81
        self.add_module(self.norm2_name, norm2)
pangjm's avatar
pangjm committed
82
        self.conv3 = nn.Conv2d(
pangjm's avatar
pangjm committed
83
            width, self.planes * self.expansion, kernel_size=1, bias=False)
84
        self.add_module(self.norm3_name, norm3)
pangjm's avatar
pangjm committed
85
86
87
88
89
90
91
92
93
94
95


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   groups=1,
                   base_width=4,
                   style='pytorch',
ThangVu's avatar
ThangVu committed
96
                   with_cp=False,
yhcao6's avatar
yhcao6 committed
97
98
                   normalize=dict(type='BN'),
                   dcn=None):
pangjm's avatar
pangjm committed
99
100
101
102
103
104
105
106
107
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
ThangVu's avatar
ThangVu committed
108
            build_norm_layer(normalize, planes * block.expansion)[1],
pangjm's avatar
pangjm committed
109
110
111
112
113
114
115
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
pangjm's avatar
pangjm committed
116
117
118
            stride=stride,
            dilation=dilation,
            downsample=downsample,
pangjm's avatar
pangjm committed
119
120
121
            groups=groups,
            base_width=base_width,
            style=style,
ThangVu's avatar
ThangVu committed
122
            with_cp=with_cp,
yhcao6's avatar
yhcao6 committed
123
124
            normalize=normalize,
            dcn=dcn))
pangjm's avatar
pangjm committed
125
126
127
128
129
130
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(
                inplanes,
                planes,
pangjm's avatar
pangjm committed
131
132
                stride=1,
                dilation=dilation,
pangjm's avatar
pangjm committed
133
134
135
                groups=groups,
                base_width=base_width,
                style=style,
ThangVu's avatar
ThangVu committed
136
                with_cp=with_cp,
yhcao6's avatar
yhcao6 committed
137
138
                normalize=normalize,
                dcn=dcn))
pangjm's avatar
pangjm committed
139
140
141
142

    return nn.Sequential(*layers)


Kai Chen's avatar
Kai Chen committed
143
@BACKBONES.register_module
pangjm's avatar
pangjm committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
class ResNeXt(ResNet):
    """ResNeXt backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        groups (int): Group of resnext.
        base_width (int): Base width of resnext.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
thangvu's avatar
thangvu committed
160
161
162
163
        normalize (dict): dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
pangjm's avatar
pangjm committed
164
165
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
thangvu's avatar
thangvu committed
166
167
        zero_init_residual (bool): whether to use zero init for last norm layer
            in resblocks to let them behave as identity.
pangjm's avatar
pangjm committed
168
169
170
171
172
173
174
175
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

pangjm's avatar
pangjm committed
176
177
    def __init__(self, groups=1, base_width=4, **kwargs):
        super(ResNeXt, self).__init__(**kwargs)
pangjm's avatar
pangjm committed
178
179
180
181
182
183
        self.groups = groups
        self.base_width = base_width

        self.inplanes = 64
        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
pangjm's avatar
pangjm committed
184
185
            stride = self.strides[i]
            dilation = self.dilations[i]
yhcao6's avatar
yhcao6 committed
186
            dcn = self.dcn if self.stage_with_dcn[i] else None
pangjm's avatar
pangjm committed
187
188
189
190
191
192
193
194
195
196
197
            planes = 64 * 2**i
            res_layer = make_res_layer(
                self.block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                groups=self.groups,
                base_width=self.base_width,
                style=self.style,
ThangVu's avatar
ThangVu committed
198
                with_cp=self.with_cp,
199
                normalize=self.normalize,
yhcao6's avatar
yhcao6 committed
200
                dcn=dcn)
pangjm's avatar
pangjm committed
201
202
203
204
            self.inplanes = planes * self.block.expansion
            layer_name = 'layer{}'.format(i + 1)
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)
ThangVu's avatar
ThangVu committed
205
206

        self._freeze_stages()