resnext.py 4.78 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
5
import math

import torch.nn as nn

from .resnet import ResNet
pangjm's avatar
pangjm committed
6
from .resnet import Bottleneck as _Bottleneck
pangjm's avatar
pangjm committed
7
8


pangjm's avatar
pangjm committed
9
class Bottleneck(_Bottleneck):
pangjm's avatar
pangjm committed
10

pangjm's avatar
pangjm committed
11
    def __init__(self, *args, groups=1, base_width=4, **kwargs):
pangjm's avatar
pangjm committed
12
        """Bottleneck block for ResNeXt.
pangjm's avatar
pangjm committed
13
14
15
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
pangjm's avatar
pangjm committed
16
        super(Bottleneck, self).__init__(*args, **kwargs)
pangjm's avatar
pangjm committed
17

pangjm's avatar
pangjm committed
18
        if groups == 1:
pangjm's avatar
pangjm committed
19
            width = self.planes
pangjm's avatar
pangjm committed
20
        else:
pangjm's avatar
pangjm committed
21
            width = math.floor(self.planes * (base_width / 64)) * groups
pangjm's avatar
pangjm committed
22

pangjm's avatar
pangjm committed
23
        self.conv1 = nn.Conv2d(
pangjm's avatar
pangjm committed
24
25
26
27
28
            self.inplanes,
            width,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
pangjm's avatar
pangjm committed
29
30
31
32
33
        self.bn1 = nn.BatchNorm2d(width)
        self.conv2 = nn.Conv2d(
            width,
            width,
            kernel_size=3,
pangjm's avatar
pangjm committed
34
35
36
            stride=self.conv2_stride,
            padding=self.dilation,
            dilation=self.dilation,
pangjm's avatar
pangjm committed
37
38
39
40
            groups=groups,
            bias=False)
        self.bn2 = nn.BatchNorm2d(width)
        self.conv3 = nn.Conv2d(
pangjm's avatar
pangjm committed
41
42
            width, self.planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.planes * self.expansion)
pangjm's avatar
pangjm committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   groups=1,
                   base_width=4,
                   style='pytorch',
                   with_cp=False):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
pangjm's avatar
pangjm committed
72
73
74
            stride=stride,
            dilation=dilation,
            downsample=downsample,
pangjm's avatar
pangjm committed
75
76
77
78
79
80
81
82
83
84
            groups=groups,
            base_width=base_width,
            style=style,
            with_cp=with_cp))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(
                inplanes,
                planes,
pangjm's avatar
pangjm committed
85
86
                stride=1,
                dilation=dilation,
pangjm's avatar
pangjm committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
                groups=groups,
                base_width=base_width,
                style=style,
                with_cp=with_cp))

    return nn.Sequential(*layers)


class ResNeXt(ResNet):
    """ResNeXt backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        groups (int): Group of resnext.
        base_width (int): Base width of resnext.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        bn_eval (bool): Whether to set BN layers to eval mode, namely, freeze
            running stats (mean and var).
        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

pangjm's avatar
pangjm committed
124
125
    def __init__(self, groups=1, base_width=4, **kwargs):
        super(ResNeXt, self).__init__(**kwargs)
pangjm's avatar
pangjm committed
126
127
128
129
130
131
        self.groups = groups
        self.base_width = base_width

        self.inplanes = 64
        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
pangjm's avatar
pangjm committed
132
133
            stride = self.strides[i]
            dilation = self.dilations[i]
pangjm's avatar
pangjm committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            planes = 64 * 2**i
            res_layer = make_res_layer(
                self.block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                groups=self.groups,
                base_width=self.base_width,
                style=self.style,
                with_cp=self.with_cp)
            self.inplanes = planes * self.block.expansion
            layer_name = 'layer{}'.format(i + 1)
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)