resnext.py 5.83 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
5
import math

import torch.nn as nn

from .resnet import ResNet
pangjm's avatar
pangjm committed
6
from .resnet import Bottleneck as _Bottleneck
Kai Chen's avatar
Kai Chen committed
7
from ..registry import BACKBONES
ThangVu's avatar
ThangVu committed
8
from ..utils import build_norm_layer
pangjm's avatar
pangjm committed
9
10


pangjm's avatar
pangjm committed
11
class Bottleneck(_Bottleneck):
pangjm's avatar
pangjm committed
12

pangjm's avatar
pangjm committed
13
    def __init__(self, *args, groups=1, base_width=4, **kwargs):
pangjm's avatar
pangjm committed
14
        """Bottleneck block for ResNeXt.
pangjm's avatar
pangjm committed
15
16
17
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
pangjm's avatar
pangjm committed
18
        super(Bottleneck, self).__init__(*args, **kwargs)
pangjm's avatar
pangjm committed
19

pangjm's avatar
pangjm committed
20
        if groups == 1:
pangjm's avatar
pangjm committed
21
            width = self.planes
pangjm's avatar
pangjm committed
22
        else:
pangjm's avatar
pangjm committed
23
            width = math.floor(self.planes * (base_width / 64)) * groups
pangjm's avatar
pangjm committed
24

ThangVu's avatar
ThangVu committed
25
26
27
28
29
30
31
32
33
34
        self.norm1_name, norm1 = build_norm_layer(self.normalize,
                                                  width,
                                                  postfix=1)
        self.norm2_name, norm2 = build_norm_layer(self.normalize,
                                                  width,
                                                  postfix=2)
        self.norm3_name, norm3 = build_norm_layer(self.normalize,
                                                  self.planes * self.expansion,
                                                  postfix=3)

pangjm's avatar
pangjm committed
35
        self.conv1 = nn.Conv2d(
pangjm's avatar
pangjm committed
36
37
38
39
40
            self.inplanes,
            width,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
41
        self.add_module(self.norm1_name, norm1)
pangjm's avatar
pangjm committed
42
43
44
45
        self.conv2 = nn.Conv2d(
            width,
            width,
            kernel_size=3,
pangjm's avatar
pangjm committed
46
47
48
            stride=self.conv2_stride,
            padding=self.dilation,
            dilation=self.dilation,
pangjm's avatar
pangjm committed
49
50
            groups=groups,
            bias=False)
51
        self.add_module(self.norm2_name, norm2)
pangjm's avatar
pangjm committed
52
        self.conv3 = nn.Conv2d(
pangjm's avatar
pangjm committed
53
            width, self.planes * self.expansion, kernel_size=1, bias=False)
54
        self.add_module(self.norm3_name, norm3)
pangjm's avatar
pangjm committed
55
56
57
58
59
60
61
62
63
64
65


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   groups=1,
                   base_width=4,
                   style='pytorch',
ThangVu's avatar
ThangVu committed
66
67
                   with_cp=False,
                   normalize=dict(type='BN')):
pangjm's avatar
pangjm committed
68
69
70
71
72
73
74
75
76
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
ThangVu's avatar
ThangVu committed
77
            build_norm_layer(normalize, planes * block.expansion)[1],
pangjm's avatar
pangjm committed
78
79
80
81
82
83
84
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
pangjm's avatar
pangjm committed
85
86
87
            stride=stride,
            dilation=dilation,
            downsample=downsample,
pangjm's avatar
pangjm committed
88
89
90
            groups=groups,
            base_width=base_width,
            style=style,
ThangVu's avatar
ThangVu committed
91
92
            with_cp=with_cp,
            normalize=normalize))
pangjm's avatar
pangjm committed
93
94
95
96
97
98
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(
                inplanes,
                planes,
pangjm's avatar
pangjm committed
99
100
                stride=1,
                dilation=dilation,
pangjm's avatar
pangjm committed
101
102
103
                groups=groups,
                base_width=base_width,
                style=style,
ThangVu's avatar
ThangVu committed
104
105
                with_cp=with_cp,
                normalize=normalize))
pangjm's avatar
pangjm committed
106
107
108
109

    return nn.Sequential(*layers)


Kai Chen's avatar
Kai Chen committed
110
@BACKBONES.register_module
pangjm's avatar
pangjm committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class ResNeXt(ResNet):
    """ResNeXt backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        groups (int): Group of resnext.
        base_width (int): Base width of resnext.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
thangvu's avatar
thangvu committed
127
128
129
130
        normalize (dict): dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
pangjm's avatar
pangjm committed
131
132
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
thangvu's avatar
thangvu committed
133
134
        zero_init_residual (bool): whether to use zero init for last norm layer
            in resblocks to let them behave as identity.
pangjm's avatar
pangjm committed
135
136
137
138
139
140
141
142
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

pangjm's avatar
pangjm committed
143
144
    def __init__(self, groups=1, base_width=4, **kwargs):
        super(ResNeXt, self).__init__(**kwargs)
pangjm's avatar
pangjm committed
145
146
147
148
149
150
        self.groups = groups
        self.base_width = base_width

        self.inplanes = 64
        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
pangjm's avatar
pangjm committed
151
152
            stride = self.strides[i]
            dilation = self.dilations[i]
pangjm's avatar
pangjm committed
153
154
155
156
157
158
159
160
161
162
163
            planes = 64 * 2**i
            res_layer = make_res_layer(
                self.block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                groups=self.groups,
                base_width=self.base_width,
                style=self.style,
ThangVu's avatar
ThangVu committed
164
165
                with_cp=self.with_cp,
                normalize=self.normalize)
pangjm's avatar
pangjm committed
166
167
168
169
            self.inplanes = planes * self.block.expansion
            layer_name = 'layer{}'.format(i + 1)
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)
ThangVu's avatar
ThangVu committed
170
171

        self._freeze_stages()