resnext.py 6.93 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
import math

import torch.nn as nn

yhcao6's avatar
yhcao6 committed
5
from mmdet.ops import DeformConv, ModulatedDeformConv
pangjm's avatar
pangjm committed
6
from .resnet import Bottleneck as _Bottleneck
yhcao6's avatar
yhcao6 committed
7
from .resnet import ResNet
Kai Chen's avatar
Kai Chen committed
8
from ..registry import BACKBONES
ThangVu's avatar
ThangVu committed
9
from ..utils import build_norm_layer
pangjm's avatar
pangjm committed
10
11


pangjm's avatar
pangjm committed
12
class Bottleneck(_Bottleneck):
pangjm's avatar
pangjm committed
13

pangjm's avatar
pangjm committed
14
    def __init__(self, *args, groups=1, base_width=4, **kwargs):
pangjm's avatar
pangjm committed
15
        """Bottleneck block for ResNeXt.
pangjm's avatar
pangjm committed
16
17
18
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
pangjm's avatar
pangjm committed
19
        super(Bottleneck, self).__init__(*args, **kwargs)
pangjm's avatar
pangjm committed
20

pangjm's avatar
pangjm committed
21
        if groups == 1:
pangjm's avatar
pangjm committed
22
            width = self.planes
pangjm's avatar
pangjm committed
23
        else:
pangjm's avatar
pangjm committed
24
            width = math.floor(self.planes * (base_width / 64)) * groups
pangjm's avatar
pangjm committed
25

yhcao6's avatar
yhcao6 committed
26
27
28
29
30
31
        self.norm1_name, norm1 = build_norm_layer(
            self.normalize, width, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            self.normalize, width, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            self.normalize, self.planes * self.expansion, postfix=3)
ThangVu's avatar
ThangVu committed
32

pangjm's avatar
pangjm committed
33
        self.conv1 = nn.Conv2d(
pangjm's avatar
pangjm committed
34
35
36
37
38
            self.inplanes,
            width,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
39
        self.add_module(self.norm1_name, norm1)
yhcao6's avatar
yhcao6 committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.get('fallback_on_stride', False)
            self.with_modulated_dcn = self.dcn.get('modulated', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = nn.Conv2d(
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                bias=False)
        else:
            deformable_groups = self.dcn.get('deformable_groups', 1)
            if not self.with_modulated_dcn:
                conv_op = DeformConv
                offset_channels = 18
            else:
                conv_op = ModulatedDeformConv
                offset_channels = 27
            self.conv2_offset = nn.Conv2d(
                width,
                deformable_groups * offset_channels,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation)
            self.conv2 = conv_op(
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                deformable_groups=deformable_groups,
                bias=False)
80
        self.add_module(self.norm2_name, norm2)
pangjm's avatar
pangjm committed
81
        self.conv3 = nn.Conv2d(
pangjm's avatar
pangjm committed
82
            width, self.planes * self.expansion, kernel_size=1, bias=False)
83
        self.add_module(self.norm3_name, norm3)
pangjm's avatar
pangjm committed
84
85
86
87
88
89
90
91
92
93
94


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   groups=1,
                   base_width=4,
                   style='pytorch',
ThangVu's avatar
ThangVu committed
95
                   with_cp=False,
yhcao6's avatar
yhcao6 committed
96
97
                   normalize=dict(type='BN'),
                   dcn=None):
pangjm's avatar
pangjm committed
98
99
100
101
102
103
104
105
106
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
ThangVu's avatar
ThangVu committed
107
            build_norm_layer(normalize, planes * block.expansion)[1],
pangjm's avatar
pangjm committed
108
109
110
111
112
113
114
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
pangjm's avatar
pangjm committed
115
116
117
            stride=stride,
            dilation=dilation,
            downsample=downsample,
pangjm's avatar
pangjm committed
118
119
120
            groups=groups,
            base_width=base_width,
            style=style,
ThangVu's avatar
ThangVu committed
121
            with_cp=with_cp,
yhcao6's avatar
yhcao6 committed
122
123
            normalize=normalize,
            dcn=dcn))
pangjm's avatar
pangjm committed
124
125
126
127
128
129
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(
                inplanes,
                planes,
pangjm's avatar
pangjm committed
130
131
                stride=1,
                dilation=dilation,
pangjm's avatar
pangjm committed
132
133
134
                groups=groups,
                base_width=base_width,
                style=style,
ThangVu's avatar
ThangVu committed
135
                with_cp=with_cp,
yhcao6's avatar
yhcao6 committed
136
137
                normalize=normalize,
                dcn=dcn))
pangjm's avatar
pangjm committed
138
139
140
141

    return nn.Sequential(*layers)


Kai Chen's avatar
Kai Chen committed
142
@BACKBONES.register_module
pangjm's avatar
pangjm committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
class ResNeXt(ResNet):
    """ResNeXt backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        groups (int): Group of resnext.
        base_width (int): Base width of resnext.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
thangvu's avatar
thangvu committed
159
160
161
162
        normalize (dict): dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
pangjm's avatar
pangjm committed
163
164
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
thangvu's avatar
thangvu committed
165
166
        zero_init_residual (bool): whether to use zero init for last norm layer
            in resblocks to let them behave as identity.
pangjm's avatar
pangjm committed
167
168
169
170
171
172
173
174
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

pangjm's avatar
pangjm committed
175
176
    def __init__(self, groups=1, base_width=4, **kwargs):
        super(ResNeXt, self).__init__(**kwargs)
pangjm's avatar
pangjm committed
177
178
179
180
181
182
        self.groups = groups
        self.base_width = base_width

        self.inplanes = 64
        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
pangjm's avatar
pangjm committed
183
184
            stride = self.strides[i]
            dilation = self.dilations[i]
pangjm's avatar
pangjm committed
185
186
187
188
189
190
191
192
193
194
195
            planes = 64 * 2**i
            res_layer = make_res_layer(
                self.block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                groups=self.groups,
                base_width=self.base_width,
                style=self.style,
ThangVu's avatar
ThangVu committed
196
197
                with_cp=self.with_cp,
                normalize=self.normalize)
pangjm's avatar
pangjm committed
198
199
200
201
            self.inplanes = planes * self.block.expansion
            layer_name = 'layer{}'.format(i + 1)
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)
ThangVu's avatar
ThangVu committed
202
203

        self._freeze_stages()