resnext.py 5.99 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import math

import torch.nn as nn
import torch.utils.checkpoint as cp

from .resnet import ResNet


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 groups=1,
                 base_width=4,
                 style='pytorch',
                 with_cp=False):
pangjm's avatar
pangjm committed
22
        """Bottleneck block for ResNeXt.
pangjm's avatar
pangjm committed
23
24
25
26
27
28
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']

pangjm's avatar
pangjm committed
29
30
31
32
        if groups == 1:
            width = planes
        else:
            width = math.floor(planes * (base_width / 64)) * groups
pangjm's avatar
pangjm committed
33
34
35
36
37
38
39

        if style == 'pytorch':
            conv1_stride = 1
            conv2_stride = stride
        else:
            conv1_stride = stride
            conv2_stride = 1
pangjm's avatar
pangjm committed
40

pangjm's avatar
pangjm committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        self.conv1 = nn.Conv2d(
            inplanes, width, kernel_size=1, stride=conv1_stride, bias=False)
        self.bn1 = nn.BatchNorm2d(width)
        self.conv2 = nn.Conv2d(
            width,
            width,
            kernel_size=3,
            stride=conv2_stride,
            padding=dilation,
            dilation=dilation,
            groups=groups,
            bias=False)
        self.bn2 = nn.BatchNorm2d(width)
        self.conv3 = nn.Conv2d(
            width, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp

    def forward(self, x):

        def _inner_forward(x):
pangjm's avatar
pangjm committed
66
            identity = x
pangjm's avatar
pangjm committed
67
68
69
70
71
72
73
74
75
76
77
78
79

            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.bn3(out)

            if self.downsample is not None:
pangjm's avatar
pangjm committed
80
                identity = self.downsample(x)
pangjm's avatar
pangjm committed
81

pangjm's avatar
pangjm committed
82
            out += identity
pangjm's avatar
pangjm committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   groups=1,
                   base_width=4,
                   style='pytorch',
                   with_cp=False):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
            stride,
            dilation,
            downsample,
            groups=groups,
            base_width=base_width,
            style=style,
            with_cp=with_cp))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(
                inplanes,
                planes,
                1,
                dilation,
                groups=groups,
                base_width=base_width,
                style=style,
                with_cp=with_cp))

    return nn.Sequential(*layers)


class ResNeXt(ResNet):
    """ResNeXt backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        groups (int): Group of resnext.
        base_width (int): Base width of resnext.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        bn_eval (bool): Whether to set BN layers to eval mode, namely, freeze
            running stats (mean and var).
        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self,
                 groups=1,
                 base_width=4,
                 *args,
                 **kwargs):
        super(ResNeXt, self).__init__(*args, **kwargs)
        self.groups = groups
        self.base_width = base_width

        self.inplanes = 64
        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
pangjm's avatar
pangjm committed
187
188
            stride = self.strides[i]
            dilation = self.dilations[i]
pangjm's avatar
pangjm committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            planes = 64 * 2**i
            res_layer = make_res_layer(
                self.block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                groups=self.groups,
                base_width=self.base_width,
                style=self.style,
                with_cp=self.with_cp)
            self.inplanes = planes * self.block.expansion
            layer_name = 'layer{}'.format(i + 1)
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)