README.md 8.09 KB
Newer Older
1
2
3
4
5
# ResNet50

## 论文
`Deep Residual Learning for Image Recognition`
- https://arxiv.org/abs/1512.03385
qianyj's avatar
qianyj committed
6
7
## 模型结构
ResNet50网络中包含了49个卷积层、1个全连接层等
8
9
10
11
12
13
14
15
16

![img](./doc/ResNet50.png)
## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。

![img](./doc/Residual_Block.png)
## 环境配置
### Docker(方法一)
```
zhanggezhong's avatar
zhanggezhong committed
17
docker pull image.sourcefind.cn:5000/dcu/admin/base/tensorflow:2.13.1-ubuntu20.04-dtk24.04.1-py3.10
18
# <Your Image ID>用上面拉取docker镜像的ID替换
dcuai's avatar
dcuai committed
19
docker run --shm-size 16g --network=host --name=resnet50_tensorFlow --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v $PWD/resnet50_tensorflow:/home/resnet50_tensorflow -it <Your Image ID> bash
“qianyj”'s avatar
“qianyj” committed
20
pip install -r requirements.txt --no-deps
21
22
23
```
### Dockerfile(方法二)
```
“qianyj”'s avatar
“qianyj” committed
24
25
cd resnet50_tensorflow/docker
docker build --no-cache -t resnet50_tensorflow:latest .
dcuai's avatar
dcuai committed
26
docker run --rm --shm-size 16g --network=host --name=resnet50_tensorflow --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v $PWD/../../resnet50_tensorflow:/home/resnet50_tensorflow -it resnet50_tensorflow:latest bash
27
28
29

```
### Anaconda(方法三)
“qianyj”'s avatar
“qianyj” committed
30
1、关于本项目DCU显卡所需的特殊深度学习库可以从开发者社区下载安装:
chenzk's avatar
chenzk committed
31
https://developer.sourcefind.cn/tool/
32
```
dcuai's avatar
dcuai committed
33
DTK版本:dtk24.04.1
zhanggzh's avatar
zhanggzh committed
34
python:  3.10
zhanggezhong's avatar
zhanggezhong committed
35
tensorflow: 2.13.1
zhanggezhong's avatar
zhanggezhong committed
36
tf-models-official: 2.13.1
zhanggezhong's avatar
zhanggezhong committed
37
38
keras: 2.13.1
tensorboard: 2.13
qianyj's avatar
qianyj committed
39
hyhal
40
41
```
`Tips:以上dtk、python、tensorflow等DCU相关工具版本需要严格一一对应`
qianyj's avatar
qianyj committed
42

43
44
2、其他非特殊库参照requirements.txt安装
```
“qianyj”'s avatar
“qianyj” committed
45
pip3 install -r requirements.txt  --no-deps
46
47
```

qianyj's avatar
qianyj committed
48
## 数据集
“qianyj”'s avatar
“qianyj” committed
49
50

1、真实数据
“qianyj”'s avatar
“qianyj” committed
51

qianyj's avatar
qianyj committed
52
使用ImageNet数据集,并且需要转成TFRecord格式
chenzk's avatar
chenzk committed
53
ImageNet数据集可以[官网](https://image-net.org/ "ImageNet数据集官网")下载,ImageNet数据集转成TFRecord格式,可以参考以下[script](https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py)[README](https://github.com/tensorflow/tpu/tree/master/tools/datasets#imagenet_to_gcspy)
“qianyj”'s avatar
“qianyj” committed
54
制作完成的TFRrecord数据形式如下:
“qianyj”'s avatar
“qianyj” committed
55
```
“qianyj”'s avatar
“qianyj” committed
56
57
58
tfrecord-imagenet
                | 
                train-00000-of-01024
“qianyj”'s avatar
“qianyj” committed
59
                train-00001-of-01024
“qianyj”'s avatar
“qianyj” committed
60
                ...
“qianyj”'s avatar
“qianyj” committed
61
                train-01022-of-01024
“qianyj”'s avatar
“qianyj” committed
62
63
64
65
                train-01023-of-01024
                validation-00000-of-00128
                validation-00001-of-00128
                ...
“qianyj”'s avatar
“qianyj” committed
66
                validation-00126-of-00128
“qianyj”'s avatar
“qianyj” committed
67
                validation-00127-of-00128
“qianyj”'s avatar
“qianyj” committed
68
```
“qianyj”'s avatar
“qianyj” committed
69
2、合成数据
“qianyj”'s avatar
“qianyj” committed
70

“qianyj”'s avatar
“qianyj” committed
71
基于随机合成的数据,不需要下载ImageNet数据集,执行网络训练时只需要把程序执行语句中的--use_synthetic_data设置为true即可
qianyj's avatar
qianyj committed
72
73
74
75

## 训练
### fp32训练
#### 单机单卡训练命令:
qianyj's avatar
qianyj committed
76

qianyj's avatar
qianyj committed
77
不打开xla:
qianyj's avatar
qianyj committed
78

qianyj's avatar
qianyj committed
79
    export PYTHONPATH=/home/resnet50_tensorFlow:$PYTHONPATH  
qianyj's avatar
qianyj committed
80
    python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
81
82

打开xla:
qianyj's avatar
qianyj committed
83
84
    
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
85
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
86
87
88

#### 单机四卡训练指令:
不打开xla:
qianyj's avatar
qianyj committed
89

qianyj's avatar
qianyj committed
90
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
91
    python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
92
93

打开xla:
qianyj's avatar
qianyj committed
94

qianyj's avatar
qianyj committed
95
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
96
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp32
qianyj's avatar
qianyj committed
97
98

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例):
qianyj's avatar
qianyj committed
99

qianyj's avatar
qianyj committed
100
sed指令只需要执行一次,添加支持多卡运行的代码
qianyj's avatar
qianyj committed
101

qianyj's avatar
qianyj committed
102
    sed -i '100 r configfile' official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py
qianyj's avatar
qianyj committed
103
104

不打开xla:
qianyj's avatar
qianyj committed
105

qianyj's avatar
qianyj committed
106
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
107
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh
qianyj's avatar
qianyj committed
108
109

打开xla:
qianyj's avatar
qianyj committed
110
111
    
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
112
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh
qianyj's avatar
qianyj committed
113
114
115
    
### fp16训练
#### 单机单卡训练指令
qianyj's avatar
qianyj committed
116

qianyj's avatar
qianyj committed
117
不打开xla:
qianyj's avatar
qianyj committed
118
   
qianyj's avatar
qianyj committed
119
    export PYTHONPATH=/home/resnet50_tensorFlow:$PYTHONPATH
qianyj's avatar
qianyj committed
120
    python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false --train_epochs=90  --dtype=fp16
qianyj's avatar
qianyj committed
121
122

打开xla:
qianyj's avatar
qianyj committed
123
  
qianyj's avatar
qianyj committed
124
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
125
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
126
127

#### 单机四卡训练指令
qianyj's avatar
qianyj committed
128

qianyj's avatar
qianyj committed
129
不打开xla:
qianyj's avatar
qianyj committed
130
  
qianyj's avatar
qianyj committed
131
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
132
    python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
133
134

打开xla:
qianyj's avatar
qianyj committed
135
136
    
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
137
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
138
139

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例)
qianyj's avatar
qianyj committed
140

qianyj's avatar
qianyj committed
141
sed指令只需要执行一次,添加支持多卡运行的代码
qianyj's avatar
qianyj committed
142
    
qianyj's avatar
qianyj committed
143
    sed -i '100 r configfile' official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py
qianyj's avatar
qianyj committed
144

qianyj's avatar
qianyj committed
145
146
147
修改scripts-run/single_process.sh和scripts-run/single_process_xla.sh文件里的--dtype=fp16

不打开xla:
qianyj's avatar
qianyj committed
148

qianyj's avatar
qianyj committed
149
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
150
151
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh

qianyj's avatar
qianyj committed
152
打开xla:
qianyj's avatar
qianyj committed
153
154
 
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
155
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh
qianyj's avatar
qianyj committed
156

qianyj's avatar
qianyj committed
157
158
159
### result
![img](./doc/ILSVRC2012_val_00001915.PNG)
![img](./doc/ILSVRC2012_val_00003386.PNG)
qianyj's avatar
qianyj committed
160

qianyj's avatar
qianyj committed
161
## 精度
qianyj's avatar
qianyj committed
162
测试数据:[ImageNet的测试数据集](https://image-net.org/ "ImageNet数据集官网"),使用的加速卡:DCU-Z100-16G
qianyj's avatar
qianyj committed
163

164
165
| 卡数 | batch size | 类型 |  Accuracy | 是否打开xla | 进程数 |
| :------: | :------: |  :------: | :------: | :------:| -------- |
qianyj's avatar
qianyj committed
166
167
168
169
| 4 | 512 | fp32 |  0.763  | 否 | 单进程 |
| 4 | 512 | fp16 |  0.764  | 否 | 单进程 |
| 4 | 512 | fp32 |  0.764  | 否 | 四进程 |
| 4 | 512 | fp16 |  0.763  | 否 | 四进程 |
170

“qianyj”'s avatar
“qianyj” committed
171
172
173
174
175
176
## 应用场景
### 算法类别
`图像分类`
### 热点应用行业
`制造,政府,医疗,科研`

177
## 源码仓库及问题反馈
chenzk's avatar
chenzk committed
178
* https://developer.sourcefind.cn/codes/modelzoo/resnet50_tensorflow
179

dcuai's avatar
dcuai committed
180
## 参考资料
qianyj's avatar
qianyj committed
181
182
* https://github.com/tensorflow/models/tree/master
* https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy