README.md 5.69 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# 模型名称(此处需修改,用英文全称与简写)
## 模型介绍
使用TensorFlow2进行ResNet50的训练
## 模型结构
ResNet50网络中包含了49个卷积层、1个全连接层等
## 数据集
使用ImageNet数据集,并且需要转成TFRecord格式
ImageNet数据集可以[官网](https://image-net.org/ "ImageNet数据集官网")下载、百度搜索或者联系我们
ImageNet数据集转成TFRecord格式,可以参考以下[script](https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py)[README](https://github.com/tensorflow/tpu/tree/master/tools/datasets#imagenet_to_gcspy)

## 训练
### 环境配置
使用[光源](https://www.sourcefind.cn/#/service-details)拉取训练的docker镜像:
* 训练镜像:docker pull image.sourcefind.cn:5000/dcu/admin/base/tensorflow:2.7.0-centos7.6-dtk-22.10.1-py37-latest

python依赖安装:

    pip install -r requirement.txt
### fp32训练
#### 单机单卡训练命令:
不打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH  
python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false --dtype=fp32

打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false --dtype=fp32

#### 单机四卡训练指令:
不打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --use_synthetic_data=false --dtype=fp32

打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --use_synthetic_data=false --dtype=fp32

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例):
sed指令只需要执行一次,添加支持多卡运行的代码
sed -i '100 r configfile' models-master/official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py

不打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh

打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh
    
### fp16训练
#### 单机单卡训练指令
不打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false --dtype=fp16

打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false --dtype=fp16

#### 单机四卡训练指令
不打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --use_synthetic_data=false --dtype=fp16

打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --use_synthetic_data=false --dtype=fp16

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例)
sed指令只需要执行一次,添加支持多卡运行的代码
sed -i '100 r configfile' models-master/official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py
修改scripts-run/single_process.sh和scripts-run/single_process_xla.sh文件里的--dtype=fp16

不打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh
打开xla:
export PYTHONPATH=/path/to/ResNet50_TensorFlow2:$PYTHONPATH
mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh


## 性能和准确率数据
测试数据:[ImageNet的测试数据集](https://image-net.org/ "ImageNet数据集官网"),使用的加速卡:DCU-Z00-16G

根据模型情况填写表格:
| 卡数 | batch size | 类型 | 性能 | Accuracy | 是否打开xla | | 进程数 |
| :------: | :------: | :------: | :------: |:------: |
| 4 | 512 | fp32 | 843 examples/second | 0.7628 | 否 | 单进程 |
| 4 | 512 | fp16 | - | 0.7616 | 否 | 单进程 |
| 4 | 512 | fp32 | - | 0.7608 | 否 | 四进程 |
| 4 | 512 | fp16 | - | 0.7615 | 否 | 四进程 |
## 参考
* https://github.com/tensorflow/models/tree/master
* https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy