README.md 9.02 KB
Newer Older
1
2
3
4
5
# ResNet50

## 论文
`Deep Residual Learning for Image Recognition`
- https://arxiv.org/abs/1512.03385
qianyj's avatar
qianyj committed
6
7
## 模型结构
ResNet50网络中包含了49个卷积层、1个全连接层等
8
9
10
11
12
13
14
15
16
17
18

![img](./doc/ResNet50.png)
## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。

![img](./doc/Residual_Block.png)
## 环境配置
### Docker(方法一)
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/tensorflow:2.7.0-centos7.6-dtk-22.10.1-py38-latest
# <Your Image ID>用上面拉取docker镜像的ID替换
“qianyj”'s avatar
“qianyj” committed
19
docker run --shm-size 16g --network=host --name=resnet50_tensorFlow --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/resnet50_tensorflow:/home/resnet50_tensorflow -it <Your Image ID> bash
“qianyj”'s avatar
“qianyj” committed
20
pip install -r requirements.txt --no-deps
21
22
23
```
### Dockerfile(方法二)
```
“qianyj”'s avatar
“qianyj” committed
24
25
26
cd resnet50_tensorflow/docker
docker build --no-cache -t resnet50_tensorflow:latest .
docker run --rm --shm-size 16g --network=host --name=resnet50_tensorflow --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../resnet50_tensorflow:/home/resnet50_tensorflow -it resnet50_tensorflow:latest bash
27
28
29

```
### Anaconda(方法三)
“qianyj”'s avatar
“qianyj” committed
30
1、关于本项目DCU显卡所需的特殊深度学习库可以从开发者社区下载安装:
31
32
33
34
https://developer.hpccube.com/tool/
```
DTK版本:dtk22.10.1
python:  3.8
“qianyj”'s avatar
“qianyj” committed
35
tensorflow: 2.7
36
37
38
39
40
tf-models-official: 2.7
keras: 2.7
tensorboard: 2.7
```
`Tips:以上dtk、python、tensorflow等DCU相关工具版本需要严格一一对应`
qianyj's avatar
qianyj committed
41

42
43
2、其他非特殊库参照requirements.txt安装
```
“qianyj”'s avatar
“qianyj” committed
44
pip3 install -r requirements.txt  --no-deps
45
46
```

qianyj's avatar
qianyj committed
47
## 数据集
“qianyj”'s avatar
“qianyj” committed
48
49

1、真实数据
“qianyj”'s avatar
“qianyj” committed
50

qianyj's avatar
qianyj committed
51
52
53
使用ImageNet数据集,并且需要转成TFRecord格式
ImageNet数据集可以[官网](https://image-net.org/ "ImageNet数据集官网")下载、百度搜索或者联系我们
ImageNet数据集转成TFRecord格式,可以参考以下[script](https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py)[README](https://github.com/tensorflow/tpu/tree/master/tools/datasets#imagenet_to_gcspy)
“qianyj”'s avatar
“qianyj” committed
54
制作完成的TFRrecord数据形式如下:
“qianyj”'s avatar
“qianyj” committed
55
```
“qianyj”'s avatar
“qianyj” committed
56
57
58
tfrecord-imagenet
                | 
                train-00000-of-01024
“qianyj”'s avatar
“qianyj” committed
59
                train-00001-of-01024
“qianyj”'s avatar
“qianyj” committed
60
                ...
“qianyj”'s avatar
“qianyj” committed
61
                train-01022-of-01024
“qianyj”'s avatar
“qianyj” committed
62
63
64
65
                train-01023-of-01024
                validation-00000-of-00128
                validation-00001-of-00128
                ...
“qianyj”'s avatar
“qianyj” committed
66
                validation-00126-of-00128
“qianyj”'s avatar
“qianyj” committed
67
                validation-00127-of-00128
“qianyj”'s avatar
“qianyj” committed
68
```
“qianyj”'s avatar
“qianyj” committed
69
2、合成数据
“qianyj”'s avatar
“qianyj” committed
70

“qianyj”'s avatar
“qianyj” committed
71
基于随机合成的数据,不需要下载ImageNet数据集,执行网络训练时只需要把程序执行语句中的--use_synthetic_data设置为true即可
qianyj's avatar
qianyj committed
72
73
74
75

## 训练
### fp32训练
#### 单机单卡训练命令:
qianyj's avatar
qianyj committed
76

qianyj's avatar
qianyj committed
77
不打开xla:
qianyj's avatar
qianyj committed
78

qianyj's avatar
qianyj committed
79
    export PYTHONPATH=/home/resnet50_tensorFlow:$PYTHONPATH  
“qianyj”'s avatar
“qianyj” committed
80
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
81
82

打开xla:
qianyj's avatar
qianyj committed
83
84
85
    
    sh /opt/dtk/.hip/replace_origin.sh
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
86
    在resnet_ctl_imagenet_main.py中添加环境变量os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/opt/dtk/amdgcn/bitcode"
qianyj's avatar
qianyj committed
87
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
88
89
90

#### 单机四卡训练指令:
不打开xla:
qianyj's avatar
qianyj committed
91

qianyj's avatar
qianyj committed
92
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
“qianyj”'s avatar
“qianyj” committed
93
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
94
95

打开xla:
qianyj's avatar
qianyj committed
96

qianyj's avatar
qianyj committed
97
98
    sh /opt/dtk/.hip/replace_origin.sh
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
99
    在resnet_ctl_imagenet_main.py中添加环境变量os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/opt/dtk/amdgcn/bitcode"
qianyj's avatar
qianyj committed
100
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp32
qianyj's avatar
qianyj committed
101
102

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例):
qianyj's avatar
qianyj committed
103

qianyj's avatar
qianyj committed
104
sed指令只需要执行一次,添加支持多卡运行的代码
qianyj's avatar
qianyj committed
105

“qianyj”'s avatar
“qianyj” committed
106
    sed -i '100 r configfile' official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py
qianyj's avatar
qianyj committed
107
108

不打开xla:
qianyj's avatar
qianyj committed
109

qianyj's avatar
qianyj committed
110
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
111
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh
qianyj's avatar
qianyj committed
112
113

打开xla:
qianyj's avatar
qianyj committed
114
115
116
    
    sh /opt/dtk/.hip/replace_origin.sh
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
117
    在resnet_ctl_imagenet_main.py中添加环境变量os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/opt/dtk/amdgcn/bitcode"
qianyj's avatar
qianyj committed
118
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh
qianyj's avatar
qianyj committed
119
120
121
    
### fp16训练
#### 单机单卡训练指令
qianyj's avatar
qianyj committed
122

qianyj's avatar
qianyj committed
123
不打开xla:
qianyj's avatar
qianyj committed
124
   
qianyj's avatar
qianyj committed
125
    export PYTHONPATH=/home/resnet50_tensorFlow:$PYTHONPATH
“qianyj”'s avatar
“qianyj” committed
126
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false --train_epochs=90  --dtype=fp16
qianyj's avatar
qianyj committed
127
128

打开xla:
qianyj's avatar
qianyj committed
129
  
qianyj's avatar
qianyj committed
130
131
    sh /opt/dtk/.hip/replace_origin.sh
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
132
    在resnet_ctl_imagenet_main.py中添加环境变量os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/opt/dtk/amdgcn/bitcode"
qianyj's avatar
qianyj committed
133
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
134
135

#### 单机四卡训练指令
qianyj's avatar
qianyj committed
136

qianyj's avatar
qianyj committed
137
不打开xla:
qianyj's avatar
qianyj committed
138
  
qianyj's avatar
qianyj committed
139
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
“qianyj”'s avatar
“qianyj” committed
140
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
141
142

打开xla:
qianyj's avatar
qianyj committed
143
144
145
    
    sh /opt/dtk/.hip/replace_origin.sh
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
146
    在resnet_ctl_imagenet_main.py中添加环境变量os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/opt/dtk/amdgcn/bitcode"
qianyj's avatar
qianyj committed
147
    TF_XLA_FLAGS="--tf_xla_auto_jit=1" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
148
149

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例)
qianyj's avatar
qianyj committed
150

qianyj's avatar
qianyj committed
151
sed指令只需要执行一次,添加支持多卡运行的代码
qianyj's avatar
qianyj committed
152
    
“qianyj”'s avatar
“qianyj” committed
153
    sed -i '100 r configfile' official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py
qianyj's avatar
qianyj committed
154

qianyj's avatar
qianyj committed
155
156
157
修改scripts-run/single_process.sh和scripts-run/single_process_xla.sh文件里的--dtype=fp16

不打开xla:
qianyj's avatar
qianyj committed
158

qianyj's avatar
qianyj committed
159
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
160
161
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh

qianyj's avatar
qianyj committed
162
打开xla:
qianyj's avatar
qianyj committed
163
164
165
 
    sh /opt/dtk/.hip/replace_origin.sh
    export PYTHONPATH=/home/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
166
    在resnet_ctl_imagenet_main.py中添加环境变量os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/opt/dtk/amdgcn/bitcode"
qianyj's avatar
qianyj committed
167
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh
qianyj's avatar
qianyj committed
168

qianyj's avatar
qianyj committed
169
170
171
### result
![img](./doc/ILSVRC2012_val_00001915.PNG)
![img](./doc/ILSVRC2012_val_00003386.PNG)
qianyj's avatar
qianyj committed
172

qianyj's avatar
qianyj committed
173
## 精度
qianyj's avatar
qianyj committed
174
测试数据:[ImageNet的测试数据集](https://image-net.org/ "ImageNet数据集官网"),使用的加速卡:DCU-Z100-16G
qianyj's avatar
qianyj committed
175

176
177
178
179
180
181
182
| 卡数 | batch size | 类型 |  Accuracy | 是否打开xla | 进程数 |
| :------: | :------: |  :------: | :------: | :------:| -------- |
| 4 | 512 | fp32 |  0.7628 | 否 | 单进程 |
| 4 | 512 | fp16 |  0.7616 | 否 | 单进程 |
| 4 | 512 | fp32 |  0.7608 | 否 | 四进程 |
| 4 | 512 | fp16 |  0.7615 | 否 | 四进程 |

“qianyj”'s avatar
“qianyj” committed
183
184
185
186
187
188
## 应用场景
### 算法类别
`图像分类`
### 热点应用行业
`制造,政府,医疗,科研`

189
## 源码仓库及问题反馈
190
191
* https://developer.hpccube.com/codes/modelzoo/resnet50_tensorflow

qianyj's avatar
qianyj committed
192
193
194
## 参考
* https://github.com/tensorflow/models/tree/master
* https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy