README.md 7.89 KB
Newer Older
1
2
3
4
5
# ResNet50

## 论文
`Deep Residual Learning for Image Recognition`
- https://arxiv.org/abs/1512.03385
qianyj's avatar
qianyj committed
6
7
## 模型结构
ResNet50网络中包含了49个卷积层、1个全连接层等
8
9
10
11
12
13
14
15
16
17
18

![img](./doc/ResNet50.png)
## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。

![img](./doc/Residual_Block.png)
## 环境配置
### Docker(方法一)
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/tensorflow:2.7.0-centos7.6-dtk-22.10.1-py38-latest
# <Your Image ID>用上面拉取docker镜像的ID替换
“qianyj”'s avatar
“qianyj” committed
19
docker run --shm-size 16g --network=host --name=resnet50_tensorFlow --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/resnet50_tensorflow:/home/resnet50_tensorflow -it <Your Image ID> bash
20
21
22
23
pip install -r requirements.txt
```
### Dockerfile(方法二)
```
“qianyj”'s avatar
“qianyj” committed
24
25
26
cd resnet50_tensorflow/docker
docker build --no-cache -t resnet50_tensorflow:latest .
docker run --rm --shm-size 16g --network=host --name=resnet50_tensorflow --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../resnet50_tensorflow:/home/resnet50_tensorflow -it resnet50_tensorflow:latest bash
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

```
### Anaconda(方法三)
1、关于本项目DCU显卡所需的特殊深度学习库可以从开发社社区下载安装:
https://developer.hpccube.com/tool/
```
DTK版本:dtk22.10.1
python:  3.8
tensorflow: 2.9
tf-models-official: 2.7
keras: 2.7
tensorboard: 2.7
```
`Tips:以上dtk、python、tensorflow等DCU相关工具版本需要严格一一对应`
2、其他非特殊库参照requirements.txt安装
```
“qianyj”'s avatar
“qianyj” committed
43
pip3 install -r requirements.txt  --no-deps
44
45
```

qianyj's avatar
qianyj committed
46
## 数据集
“qianyj”'s avatar
“qianyj” committed
47
48

1、真实数据
qianyj's avatar
qianyj committed
49
50
51
使用ImageNet数据集,并且需要转成TFRecord格式
ImageNet数据集可以[官网](https://image-net.org/ "ImageNet数据集官网")下载、百度搜索或者联系我们
ImageNet数据集转成TFRecord格式,可以参考以下[script](https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py)[README](https://github.com/tensorflow/tpu/tree/master/tools/datasets#imagenet_to_gcspy)
“qianyj”'s avatar
“qianyj” committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
制作完成的TFRrecord数据形式如下:
tfrecord-imagenet
                | 
                train-00000-of-01024
                train-00000-of-01024
                ...
                train-01023-of-01024
                validation-00000-of-00128
                validation-00001-of-00128
                ...
                validation-00127-of-00128

2、合成数据
基于随机合成的数据,不需要下载ImageNet数据集,执行网络训练时只需要把程序执行语句中的--use_synthetic_data设置为true即可
qianyj's avatar
qianyj committed
66
67
68
69

## 训练
### fp32训练
#### 单机单卡训练命令:
qianyj's avatar
qianyj committed
70

qianyj's avatar
qianyj committed
71
不打开xla:
qianyj's avatar
qianyj committed
72

“qianyj”'s avatar
“qianyj” committed
73
74
    export PYTHONPATH=/path/to/resnet50_tensorFlow:$PYTHONPATH  
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
75
76

打开xla:
qianyj's avatar
qianyj committed
77

“qianyj”'s avatar
“qianyj” committed
78
79
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
    TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
80
81
82

#### 单机四卡训练指令:
不打开xla:
qianyj's avatar
qianyj committed
83

“qianyj”'s avatar
“qianyj” committed
84
85
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --use_synthetic_data=false  --train_epochs=90  --dtype=fp32
qianyj's avatar
qianyj committed
86
87

打开xla:
qianyj's avatar
qianyj committed
88

“qianyj”'s avatar
“qianyj” committed
89
90
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
    TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp32
qianyj's avatar
qianyj committed
91
92

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例):
qianyj's avatar
qianyj committed
93

qianyj's avatar
qianyj committed
94
sed指令只需要执行一次,添加支持多卡运行的代码
qianyj's avatar
qianyj committed
95

“qianyj”'s avatar
“qianyj” committed
96
    sed -i '100 r configfile' official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py
qianyj's avatar
qianyj committed
97
98

不打开xla:
qianyj's avatar
qianyj committed
99

“qianyj”'s avatar
“qianyj” committed
100
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
101
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh
qianyj's avatar
qianyj committed
102
103

打开xla:
qianyj's avatar
qianyj committed
104

“qianyj”'s avatar
“qianyj” committed
105
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
106
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh
qianyj's avatar
qianyj committed
107
108
109
    
### fp16训练
#### 单机单卡训练指令
qianyj's avatar
qianyj committed
110

qianyj's avatar
qianyj committed
111
不打开xla:
qianyj's avatar
qianyj committed
112
   
“qianyj”'s avatar
“qianyj” committed
113
114
    export PYTHONPATH=/path/to/resnet50_tensorFlow:$PYTHONPATH
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --use_synthetic_data=false --train_epochs=90  --dtype=fp16
qianyj's avatar
qianyj committed
115
116

打开xla:
qianyj's avatar
qianyj committed
117
  
“qianyj”'s avatar
“qianyj” committed
118
119
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
    TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=128 --num_gpus=1  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
120
121

#### 单机四卡训练指令
qianyj's avatar
qianyj committed
122

qianyj's avatar
qianyj committed
123
不打开xla:
qianyj's avatar
qianyj committed
124
  
“qianyj”'s avatar
“qianyj” committed
125
126
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
    python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
127
128

打开xla:
qianyj's avatar
qianyj committed
129

“qianyj”'s avatar
“qianyj” committed
130
131
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
    TF_XLA_FLAGS="--tf_xla_auto_jit=2" python3 official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py --data_dir=/path/to/{ImageNet-tensorflow_data_dir} --model_dir=/path/to/{model_save_dir} --batch_size=512 --num_gpus=4  --train_epochs=90  --use_synthetic_data=false --dtype=fp16
qianyj's avatar
qianyj committed
132
133

#### 多机多卡训练指令(以单机四卡模拟四卡四进程为例)
qianyj's avatar
qianyj committed
134

qianyj's avatar
qianyj committed
135
sed指令只需要执行一次,添加支持多卡运行的代码
qianyj's avatar
qianyj committed
136
    
“qianyj”'s avatar
“qianyj” committed
137
    sed -i '100 r configfile' official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py
qianyj's avatar
qianyj committed
138

qianyj's avatar
qianyj committed
139
140
141
修改scripts-run/single_process.sh和scripts-run/single_process_xla.sh文件里的--dtype=fp16

不打开xla:
qianyj's avatar
qianyj committed
142

“qianyj”'s avatar
“qianyj” committed
143
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
144
145
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process.sh

qianyj's avatar
qianyj committed
146
打开xla:
qianyj's avatar
qianyj committed
147

“qianyj”'s avatar
“qianyj” committed
148
    export PYTHONPATH=/path/to/resnet50_tensorflow:$PYTHONPATH
qianyj's avatar
qianyj committed
149
    mpirun -np 4 --hostfile hostfile  -mca btl self,tcp  --allow-run-as-root  --bind-to none scripts-run/single_process_xla.sh
qianyj's avatar
qianyj committed
150
151
152
153
154


## 性能和准确率数据
测试数据:[ImageNet的测试数据集](https://image-net.org/ "ImageNet数据集官网"),使用的加速卡:DCU-Z00-16G

155
156
157
158
159
160
161
| 卡数 | batch size | 类型 |  Accuracy | 是否打开xla | 进程数 |
| :------: | :------: |  :------: | :------: | :------:| -------- |
| 4 | 512 | fp32 |  0.7628 | 否 | 单进程 |
| 4 | 512 | fp16 |  0.7616 | 否 | 单进程 |
| 4 | 512 | fp32 |  0.7608 | 否 | 四进程 |
| 4 | 512 | fp16 |  0.7615 | 否 | 四进程 |

“qianyj”'s avatar
“qianyj” committed
162
163
164
165
166
167
## 应用场景
### 算法类别
`图像分类`
### 热点应用行业
`制造,政府,医疗,科研`

168
## 源码仓库及问题反馈
169
170
* https://developer.hpccube.com/codes/modelzoo/resnet50_tensorflow

qianyj's avatar
qianyj committed
171
172
173
## 参考
* https://github.com/tensorflow/models/tree/master
* https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy