keras_common.py 11.5 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

23
24
import numpy as np

Toby Boyd's avatar
Toby Boyd committed
25
26
27
# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf
28
29

from tensorflow.core.protobuf import rewriter_config_pb2
30
31
from tensorflow.python.keras.optimizer_v2 import (gradient_descent as
                                                  gradient_descent_v2)
32

Shining Sun's avatar
Shining Sun committed
33
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
34
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
35
36
TRAIN_TOP_1 = 'training_accuracy_top_1'

Shining Sun's avatar
Shining Sun committed
37

38
39
40
41
42
43
44
45
class BatchTimestamp(object):
  """A structure to store batch time stamp."""

  def __init__(self, batch_index, timestamp):
    self.batch_index = batch_index
    self.timestamp = timestamp


46
47
48
class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

49
  def __init__(self, batch_size, log_steps):
50
    """Callback for logging performance (# image/second).
51
52
53

    Args:
      batch_size: Total batch size.
54
      log_steps: Interval of time history logs.
55
56

    """
57
    self.batch_size = batch_size
58
    super(TimeHistory, self).__init__()
59
60
    self.log_steps = log_steps

61
62
    # Logs start of step 0 then end of each step based on log_steps interval.
    self.timestamp_log = []
63
64
65
66

  def on_train_begin(self, logs=None):
    self.record_batch = True

67
68
69
  def on_train_end(self, logs=None):
    self.train_finish_time = time.time()

70
71
  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
72
73
      timestamp = time.time()
      self.start_time = timestamp
74
      self.record_batch = False
75
76
      if batch == 0:
        self.timestamp_log.append(BatchTimestamp(batch, timestamp))
77
78

  def on_batch_end(self, batch, logs=None):
Shining Sun's avatar
Shining Sun committed
79
    if batch % self.log_steps == 0:
80
81
      timestamp = time.time()
      elapsed_time = timestamp - self.start_time
82
      examples_per_second = (self.batch_size * self.log_steps) / elapsed_time
83
      if batch != 0:
84
85
        self.record_batch = True
        self.timestamp_log.append(BatchTimestamp(batch, timestamp))
86
87
88
89
        tf.compat.v1.logging.info(
            "BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
            "'images_per_second': %f}" %
            (batch, elapsed_time, examples_per_second))
90

91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
112
113
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
114
115
116
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
117
    """Executes before step begins."""
118
119
120
121
    lr = self.schedule(self.epochs,
                       batch,
                       self.batches_per_epoch,
                       self.batch_size)
122
123
124
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
Shining Sun's avatar
Shining Sun committed
125
      self.model.optimizer.learning_rate = lr  # lr should be a float here
126
      self.prev_lr = lr
127
128
129
      tf.compat.v1.logging.debug(
          'Epoch %05d Batch %05d: LearningRateBatchScheduler '
          'change learning rate to %s.', self.epochs, batch, lr)
130

131

132
133
134
135
def get_config_proto():
  """Return config proto according to flag settings, or None to use default."""
  config = None
  if FLAGS.enable_xla:
Haoyu Zhang's avatar
Haoyu Zhang committed
136
137
138
    # TODO(haoyuzhang): Remove this monkey patch when XLA OOM issue is fixed.
    _monkey_patch_org_assert_broadcastable()

139
140
141
142
143
144
145
146
147
148
    config = tf.ConfigProto()
    config.graph_options.optimizer_options.global_jit_level = (
        tf.OptimizerOptions.ON_2)
    # Disable PinToHostOptimizer in grappler when enabling XLA because it causes
    # OOM and performance regression.
    config.graph_options.rewrite_options.pin_to_host_optimization = (
        rewriter_config_pb2.RewriterConfig.OFF)
  return config


Shining Sun's avatar
Shining Sun committed
149
def get_optimizer():
150
151
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
Shining Sun's avatar
Shining Sun committed
152
  return gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
153
154


155
def get_callbacks(learning_rate_schedule_fn, num_images):
156
  """Returns common callbacks."""
157
  time_callback = TimeHistory(FLAGS.batch_size, FLAGS.log_steps)
158
159

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
160
      log_dir=FLAGS.model_dir)
161

Shining Sun's avatar
Shining Sun committed
162
  lr_callback = LearningRateBatchScheduler(
163
164
165
      learning_rate_schedule_fn,
      batch_size=FLAGS.batch_size,
      num_images=num_images)
166
167
168

  return time_callback, tensorboard_callback, lr_callback

Shining Sun's avatar
Shining Sun committed
169

170
def build_stats(history, eval_output, time_callback):
171
172
173
174
175
176
177
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
178
    time_callback: Time tracking callback likely used during keras.fit.
179
180
181
182
183
184
185
186

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
    stats['accuracy_top_1'] = eval_output[1].item()
    stats['eval_loss'] = eval_output[0].item()
187

188
189
190
191
192
193
194
195
196
197
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['categorical_accuracy'][-1].item()
    elif 'sparse_categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['sparse_categorical_accuracy'][-1].item()

198
  if time_callback:
199
200
    timestamp_log = time_callback.timestamp_log
    stats['step_timestamp_log'] = timestamp_log
201
    stats['train_finish_time'] = time_callback.train_finish_time
202
203
204
205
206
    if len(timestamp_log) > 1:
      stats['avg_exp_per_second'] = (
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
207

208
209
210
  return stats


Shining Sun's avatar
Shining Sun committed
211
def define_keras_flags():
212
  """Define flags for Keras models."""
Shining Sun's avatar
Shining Sun committed
213
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
214
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
215
216
217
218
  flags.DEFINE_boolean(
      name='enable_xla', default=False,
      help='Whether to enable XLA auto jit compilation. This is still an '
      'experimental feature, and is not yet effective with TF 2.0.')
Shining Sun's avatar
Shining Sun committed
219
  flags.DEFINE_integer(
220
221
      name='train_steps', default=None,
      help='The number of steps to run for training. If it is larger than '
Shining Sun's avatar
Shining Sun committed
222
      '# batches per epoch, then use # batches per epoch. When this flag is '
223
      'set, only one epoch is going to run for training.')
224
225
226
227
228
  flags.DEFINE_integer(
      name='log_steps', default=100,
      help='For every log_steps, we log the timing information such as '
      'examples per second. Besides, for every log_steps, we store the '
      'timestamp of a batch end.')
229

Shining Sun's avatar
Shining Sun committed
230
231
232
233
234
235
236
237

def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
238
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
256
257
258
259
260
261
262
263
264
265
266
    inputs = tf.random.truncated_normal([height, width, num_channels],
                                        dtype=dtype,
                                        mean=127,
                                        stddev=60,
                                        name='synthetic_inputs')

    labels = tf.random.uniform([1],
                               minval=0,
                               maxval=num_classes - 1,
                               dtype=tf.int32,
                               name='synthetic_labels')
267
268
269
    # Cast to float32 for Keras model.
    labels = tf.cast(labels, dtype=tf.float32)

Shining Sun's avatar
Shining Sun committed
270
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
271
272
273

    # `drop_remainder` will make dataset produce outputs with known shapes.
    data = data.batch(batch_size, drop_remainder=True)
274
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Shining Sun's avatar
Shining Sun committed
275
276
277
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
278
279


280
281
282
283
284
def is_v2_0():
  """Returns true if using tf 2.0."""
  return tf.__version__.startswith('2')


Shining Sun's avatar
Shining Sun committed
285
286
287
288
def get_strategy_scope(strategy):
  if strategy:
    strategy_scope = strategy.scope()
  else:
Shining Sun's avatar
Shining Sun committed
289
    strategy_scope = DummyContextManager()
Shining Sun's avatar
Shining Sun committed
290
291
292
293
294

  return strategy_scope


class DummyContextManager(object):
Shining Sun's avatar
Shining Sun committed
295

Shining Sun's avatar
Shining Sun committed
296
297
298
299
300
  def __enter__(self):
    pass

  def __exit__(self, *args):
    pass
Haoyu Zhang's avatar
Haoyu Zhang committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323


def _monkey_patch_org_assert_broadcastable():
  """Monkey-patch `assert_broadcast` op to avoid OOM when enabling XLA."""
  def no_op_assert_broadcastable(weights, values):
    del weights, values
    tf.compat.v1.logging.info(
        'Using monkey-patched version of assert_broadcastable op, which always '
        'returns an no_op. It should be removed after XLA OOM issue is fixed.')
    return tf.constant([], dtype=tf.float32)

  from tensorflow.python.ops import weights_broadcast_ops  # pylint: disable=g-import-not-at-top
  if not hasattr(weights_broadcast_ops, 'org_assert_broadcastable'):
    weights_broadcast_ops.org_assert_broadcastable = (
        weights_broadcast_ops.assert_broadcastable)
  weights_broadcast_ops.assert_broadcastable = no_op_assert_broadcastable


def _undo_monkey_patch_org_assert_broadcastable():
  from tensorflow.python.ops import weights_broadcast_ops  # pylint: disable=g-import-not-at-top
  if hasattr(weights_broadcast_ops, 'org_assert_broadcastable'):
    weights_broadcast_ops.assert_broadcastable = (
        weights_broadcast_ops.org_assert_broadcastable)