keras_common.py 6.23 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
20
21
22
23
24
25
26
27
28
29

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import flags
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2


Shining Sun's avatar
Shining Sun committed
30
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
31
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
Shining Sun's avatar
Shining Sun committed
32

33
34
35
36
class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size):
37
    """Callback for logging performance (# image/second).
38
39
40
41
42
43
44

    Args:
      batch_size: Total batch size.

    """
    self._batch_size = batch_size
    super(TimeHistory, self).__init__()
Shining Sun's avatar
Shining Sun committed
45
    self.log_steps = 100
46
47
48
49
50
51

  def on_train_begin(self, logs=None):
    self.record_batch = True

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
Shining Sun's avatar
Shining Sun committed
52
      self.start_time= time.time()
53
54
55
      self.record_batch = False

  def on_batch_end(self, batch, logs=None):
Shining Sun's avatar
Shining Sun committed
56
57
58
    if batch % self.log_steps == 0:
      elapsed_time = time.time() - self.start_time
      examples_per_second = (self._batch_size * self.log_steps) / elapsed_time
59
60
61
62
63
      self.record_batch = True
      # TODO(anjalisridhar): add timestamp as well.
      if batch != 0:
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
Shining Sun's avatar
Shining Sun committed
64
                        (batch, elapsed_time, examples_per_second))
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
86
87
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
88
89
90
91
92
93
94
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
    lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
Shining Sun's avatar
Shining Sun committed
95
      self.model.optimizer.learning_rate = lr  # lr should be a float here
96
97
98
99
      self.prev_lr = lr
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
                   'learning rate to %s.', self.epochs, batch, lr)

Shining Sun's avatar
Shining Sun committed
100
def get_optimizer():
Shining Sun's avatar
Shining Sun committed
101
102
103
  # The learning rate set here is a placeholder and not use. It will be overwritten
  # at the beginning of each batch by callback
  return gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
104
105


106
def get_callbacks(learning_rate_schedule_fn, num_images):
Shining Sun's avatar
Shining Sun committed
107
  time_callback = TimeHistory(FLAGS.batch_size)
108
109

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
Shining Sun's avatar
Shining Sun committed
110
    log_dir=FLAGS.model_dir)
111

Shining Sun's avatar
Shining Sun committed
112
113
114
  lr_callback = LearningRateBatchScheduler(
    learning_rate_schedule_fn,
    batch_size=FLAGS.batch_size,
115
    num_images=num_images)
116
117
118

  return time_callback, tensorboard_callback, lr_callback

Shining Sun's avatar
Shining Sun committed
119
120
121

def define_keras_flags():
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
122
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
Shining Sun's avatar
Shining Sun committed
123
124
  flags.DEFINE_integer(
      name="train_steps", default=None,
Shining Sun's avatar
Shining Sun committed
125
126
127
      help="The number of steps to run for training. If it is larger than "
      "# batches per epoch, then use # bathes per epoch. When this flag is "
      "set, only one epoch is going to run for training.")
128

Shining Sun's avatar
Shining Sun committed
129
130
131
132
133
134
135
136

def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
137
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
        [batch_size] + [1],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data

  return input_fn