keras_common.py 5.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import app as absl_app
from absl import flags
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import imagenet_main
from official.resnet import imagenet_preprocessing
from official.resnet import resnet_run_loop
from official.resnet.keras import keras_resnet_model
from official.resnet.keras import resnet_model_tpu
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2


class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size):
    """Callback for Keras models.

    Args:
      batch_size: Total batch size.

    """
    self._batch_size = batch_size
    super(TimeHistory, self).__init__()

  def on_train_begin(self, logs=None):
    self.epoch_times_secs = []
    self.batch_times_secs = []
    self.record_batch = True

  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_time_start = time.time()

  def on_epoch_end(self, epoch, logs=None):
    self.epoch_times_secs.append(time.time() - self.epoch_time_start)

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
      self.batch_time_start = time.time()
      self.record_batch = False

  def on_batch_end(self, batch, logs=None):
    n = 100
    if batch % n == 0:
      last_n_batches = time.time() - self.batch_time_start
      examples_per_second = (self._batch_size * n) / last_n_batches
      self.batch_times_secs.append(last_n_batches)
      self.record_batch = True
      # TODO(anjalisridhar): add timestamp as well.
      if batch != 0:
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
                        (batch, last_n_batches, examples_per_second))

class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
    #if not hasattr(self.model.optimizer, 'learning_rate'):
    #  raise ValueError('Optimizer must have a "learning_rate" attribute.')
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
    lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
      tf.keras.backend.set_value(self.model.optimizer.learning_rate, lr)
      self.prev_lr = lr
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
                   'learning rate to %s.', self.epochs, batch, lr)

def get_optimizer_loss_and_metrics():
  # Use Keras ResNet50 applications model and native keras APIs
  # initialize RMSprop optimizer
  # TODO(anjalisridhar): Move to using MomentumOptimizer.
  # opt = tf.train.GradientDescentOptimizer(learning_rate=0.0001)
  # I am setting an initial LR of 0.001 since this will be reset
  # at the beginning of the training loop.
  opt = gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)

  # TF Optimizer:
  # learning_rate = BASE_LEARNING_RATE * flags_obj.batch_size / 256
  # opt = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
  loss = 'categorical_crossentropy'
  accuracy = 'categorical_accuracy'

  return opt, loss, accuracy


def get_dist_strategy():
  if flags_obj.num_gpus == 1 and flags_obj.dist_strat_off:
    print('Not using distribution strategies.')
    strategy = None
  else:
    strategy = distribution_utils.get_distribution_strategy(
        num_gpus=flags_obj.num_gpus)

  return strategy
  

def get_fit_callbacks():
  time_callback = keras_common.TimeHistory(flags_obj.batch_size)

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir=flags_obj.model_dir)
    #update_freq="batch")  # Add this if want per batch logging.

  lr_callback = keras_common.LearningRateBatchScheduler(
    learning_rate_schedule,
    batch_size=flags_obj.batch_size,
    num_images=imagenet_main._NUM_IMAGES['train'])

  return time_callback, tensorboard_callback, lr_callback

def analyze_eval_result(eval_output):
  stats = {}
  stats['accuracy_top_1'] = eval_output[1]
  stats['eval_loss'] = eval_output[0]
  stats['training_loss'] = history.history['loss'][-1]
  stats['training_accuracy_top_1'] = history.history['categorical_accuracy'][-1]

  print('top_1 accuracy:{}'.format(stats['accuracy_top_1']))
  print('top_1_training_accuracy:{}'.format(stats['training_accuracy_top_1']))

  return stats