keras_common.py 5.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Common util functions an classes used by both keras cifar and imagenet."""
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import app as absl_app
from absl import flags
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import imagenet_main
from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2


Shining Sun's avatar
Shining Sun committed
33
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
34
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
Shining Sun's avatar
Shining Sun committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size):
    """Callback for Keras models.

    Args:
      batch_size: Total batch size.

    """
    self._batch_size = batch_size
    super(TimeHistory, self).__init__()

  def on_train_begin(self, logs=None):
    self.epoch_times_secs = []
    self.batch_times_secs = []
    self.record_batch = True

  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_time_start = time.time()

  def on_epoch_end(self, epoch, logs=None):
    self.epoch_times_secs.append(time.time() - self.epoch_time_start)

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
      self.batch_time_start = time.time()
      self.record_batch = False

  def on_batch_end(self, batch, logs=None):
    n = 100
    if batch % n == 0:
      last_n_batches = time.time() - self.batch_time_start
      examples_per_second = (self._batch_size * n) / last_n_batches
      self.batch_times_secs.append(last_n_batches)
      self.record_batch = True
      # TODO(anjalisridhar): add timestamp as well.
      if batch != 0:
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
                        (batch, last_n_batches, examples_per_second))

class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
    #if not hasattr(self.model.optimizer, 'learning_rate'):
    #  raise ValueError('Optimizer must have a "learning_rate" attribute.')
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
    lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
Shining Sun's avatar
Shining Sun committed
107
108
      self.model.optimizer.learning_rate = lr  # lr should be a float here
      # tf.keras.backend.set_value(self.model.optimizer.learning_rate, lr)
109
110
111
112
      self.prev_lr = lr
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
                   'learning rate to %s.', self.epochs, batch, lr)

Shining Sun's avatar
Shining Sun committed
113
114
115
116
117
118
def get_optimizer():
  if FLAGS.use_tf_momentum_optimizer:
    learning_rate = BASE_LEARNING_RATE * FLAGS.batch_size / 256
    optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
  else:
    optimizer = gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
119

Shining Sun's avatar
Shining Sun committed
120
  return optimizer
121
122
123


def get_dist_strategy():
Shining Sun's avatar
Shining Sun committed
124
  if FLAGS.num_gpus == 1 and not FLAGS.use_one_device_strategy:
125
126
    print('Not using distribution strategies.')
    strategy = None
Shining Sun's avatar
Shining Sun committed
127
128
129
  elif FLAGS.num_gpus > 1 and FLAGS.use_one_device_strategy:
    rase ValueError("When %d GPUs are specified, use_one_device_strategy'
        'flag cannot be set to True.")
130
131
  else:
    strategy = distribution_utils.get_distribution_strategy(
Shining Sun's avatar
Shining Sun committed
132
        num_gpus=FLAGS.num_gpus)
133
134
135

  return strategy

Shining Sun's avatar
Shining Sun committed
136
137
138

def get_fit_callbacks(learning_rate_schedule_fn):
  time_callback = TimeHistory(FLAGS.batch_size)
139
140

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
Shining Sun's avatar
Shining Sun committed
141
    log_dir=FLAGS.model_dir)
142
143
    #update_freq="batch")  # Add this if want per batch logging.

Shining Sun's avatar
Shining Sun committed
144
145
146
  lr_callback = LearningRateBatchScheduler(
    learning_rate_schedule_fn,
    batch_size=FLAGS.batch_size,
147
148
149
150
    num_images=imagenet_main._NUM_IMAGES['train'])

  return time_callback, tensorboard_callback, lr_callback

Shining Sun's avatar
bug fix  
Shining Sun committed
151
def analyze_fit_and_eval_result(history, eval_output):
152
153
154
155
156
157
158
159
160
  stats = {}
  stats['accuracy_top_1'] = eval_output[1]
  stats['eval_loss'] = eval_output[0]
  stats['training_loss'] = history.history['loss'][-1]
  stats['training_accuracy_top_1'] = history.history['categorical_accuracy'][-1]

  print('top_1 accuracy:{}'.format(stats['accuracy_top_1']))
  print('top_1_training_accuracy:{}'.format(stats['training_accuracy_top_1']))

Shining Sun's avatar
Shining Sun committed
161
  return stats