keras_imagenet_benchmark.py 63.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
Hongkun Yu's avatar
Hongkun Yu committed
16
# pylint: disable=line-too-long
17
18
from __future__ import print_function

Allen Wang's avatar
Allen Wang committed
19
import json
20
import os
21
import time
22

Allen Wang's avatar
Allen Wang committed
23
24
from typing import Any, MutableMapping, Optional

25
from absl import flags
26
import tensorflow as tf  # pylint: disable=g-bad-import-order
27

28
from official.benchmark import benchmark_wrappers
29
from official.benchmark import keras_benchmark
30
from official.benchmark.models import resnet_imagenet_main
Fan Yang's avatar
Fan Yang committed
31
from official.legacy.image_classification import classifier_trainer
32

Toby Boyd's avatar
Toby Boyd committed
33
34
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
35

Jaehong Kim's avatar
Jaehong Kim committed
36
37
38
39
40
41
42
43
MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65
MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68

# Range of top-1 accracies for model optimization techniques.
# Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY).
MODEL_OPTIMIZATION_TOP_1_ACCURACY = {
    'RESNET50_FINETUNE_PRUNING': (0.76, 0.77),
    'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68),
44
    'MOBILENET_V1_FINETUNE_CLUSTERING': (0.68, 0.70)
Jaehong Kim's avatar
Jaehong Kim committed
45
46
}

Toby Boyd's avatar
Toby Boyd committed
47
FLAGS = flags.FLAGS
48
49


Allen Wang's avatar
Allen Wang committed
50
def _get_classifier_parameters(
Allen Wang's avatar
Allen Wang committed
51
    model_variant: Optional[str] = None,
Allen Wang's avatar
Allen Wang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
    num_gpus: int = 0,
    builder: str = 'records',
    skip_eval: bool = False,
    distribution_strategy: str = 'mirrored',
    per_replica_batch_size: int = 128,
    epochs: int = 90,
    steps: int = 0,
    epochs_between_evals: int = 1,
    dtype: str = 'float32',
    enable_xla: bool = False,
    run_eagerly: bool = False,
    gpu_thread_mode: Optional[str] = None,
    dataset_num_private_threads: Optional[int] = None,
65
    loss_scale: Optional[str] = None,
66
    report_metrics: bool = True,
67
    batchnorm_spatial_persistent: bool = False) -> MutableMapping[str, Any]:
Allen Wang's avatar
Allen Wang committed
68
  """Gets classifier trainer's ResNet parameters."""
Allen Wang's avatar
Allen Wang committed
69
  params = {
Allen Wang's avatar
Allen Wang committed
70
71
72
73
74
75
76
77
      'runtime': {
          'num_gpus': num_gpus,
          'distribution_strategy': distribution_strategy,
          'run_eagerly': run_eagerly,
          'enable_xla': enable_xla,
          'dataset_num_private_threads': dataset_num_private_threads,
          'gpu_thread_mode': gpu_thread_mode,
          'loss_scale': loss_scale,
78
          'batchnorm_spatial_persistent': batchnorm_spatial_persistent,
Allen Wang's avatar
Allen Wang committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
      },
      'train_dataset': {
          'builder': builder,
          'use_per_replica_batch_size': True,
          'batch_size': per_replica_batch_size,
          'image_size': 224,
          'dtype': dtype,
      },
      'validation_dataset': {
          'builder': builder,
          'batch_size': per_replica_batch_size,
          'use_per_replica_batch_size': True,
          'image_size': 224,
          'dtype': dtype,
      },
      'train': {
          'epochs': epochs,
          'steps': steps,
          'callbacks': {
              'enable_tensorboard': False,
              'enable_checkpoint_and_export': False,
              'enable_time_history': True,
          },
102
          'metrics': ['accuracy'] if report_metrics else [],
Allen Wang's avatar
Allen Wang committed
103
      },
Allen Wang's avatar
Allen Wang committed
104
105
106
107
108
      'model': {
          'loss': {
              'label_smoothing': 0.1,
          },
      },
Allen Wang's avatar
Allen Wang committed
109
110
111
112
113
      'evaluation': {
          'epochs_between_evals': epochs_between_evals,
          'skip_eval': skip_eval,
      },
  }
Allen Wang's avatar
Allen Wang committed
114
115
116
117
118
  if model_variant is not None:
    params['model']['model_params'] = {
        'model_name': model_variant,
    }
  return params
Allen Wang's avatar
Allen Wang committed
119
120


Toby Boyd's avatar
Toby Boyd committed
121
122
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
123

Allen Wang's avatar
Allen Wang committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  def __init__(self,
               output_dir: Optional[str] = None,
               root_data_dir: Optional[str] = None,
               **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [classifier_trainer.define_classifier_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
141
    super(Resnet50KerasAccuracy, self).__init__(
Allen Wang's avatar
Allen Wang committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        output_dir=output_dir, flag_methods=flag_methods)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs: int = 90,
      steps: int = 0,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=epochs,
        steps=steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        run_eagerly=run_eagerly,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
180
        report_metrics=True,
181
182
        loss_scale=loss_scale,
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
183
184
185
186
187
188
189
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

190
    super(Resnet50KerasAccuracy, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
191
192
193
194
195
196
197
198
199
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=total_batch_size,
        log_steps=100)

  def benchmark_8_gpu(self):
    """Tests Keras model with eager, dist_strat and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
200
201
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
202
203
204
205
206
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        per_replica_batch_size=128,
        epochs=90,
        epochs_between_evals=10,
207
        dtype='float32')
Allen Wang's avatar
Allen Wang committed
208
209
210

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with eager, dist_strat, 8 GPUs, and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
211
212
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
213
214
215
216
217
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
218
        dtype='float16')
Allen Wang's avatar
Allen Wang committed
219
220
221

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
222
223
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
224
225
226
227
228
229
        experiment_name='benchmark_xla_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
230
        enable_xla=True)
Allen Wang's avatar
Allen Wang committed
231
232
233

  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
234
235
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
236
237
238
239
240
241
242
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic',
        top_1_min=0.736,
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
243
        loss_scale='dynamic')
Allen Wang's avatar
Allen Wang committed
244
245
246
247
248

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Jaehong Kim's avatar
Jaehong Kim committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for MobilenetV1 in Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
    super(MobilenetV1KerasAccuracy, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags={
            'model': 'mobilenet',
            'optimizer': 'mobilenet_default',
            'initial_learning_rate_per_sample': 0.00039,
        })

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY,
                                top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(MobilenetV1KerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Allen Wang's avatar
Allen Wang committed
308
309
class KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Classifier Trainer benchmarks."""
Allen Wang's avatar
Allen Wang committed
310

Allen Wang's avatar
Allen Wang committed
311
  def __init__(self, model, output_dir=None, default_flags=None,
Allen Wang's avatar
Allen Wang committed
312
313
314
315
               tpu=None, dataset_builder='records', train_epochs=1,
               train_steps=110, data_dir=None):
    flag_methods = [classifier_trainer.define_classifier_flags]

Allen Wang's avatar
Allen Wang committed
316
    self.model = model
Allen Wang's avatar
Allen Wang committed
317
318
319
320
321
    self.dataset_builder = dataset_builder
    self.train_epochs = train_epochs
    self.train_steps = train_steps
    self.data_dir = data_dir

Allen Wang's avatar
Allen Wang committed
322
    super(KerasClassifierBenchmarkBase, self).__init__(
Allen Wang's avatar
Allen Wang committed
323
324
325
326
327
328
329
330
331
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        tpu=tpu)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
Allen Wang's avatar
Allen Wang committed
332
      model_variant: Optional[str] = None,
Allen Wang's avatar
Allen Wang committed
333
334
335
336
      skip_steps: Optional[int] = None,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
David Chen's avatar
David Chen committed
337
      num_tpus: int = 0,
Allen Wang's avatar
Allen Wang committed
338
339
340
341
342
343
344
345
346
347
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
Allen Wang's avatar
Allen Wang committed
348
    FLAGS.model_type = self.model
Allen Wang's avatar
Allen Wang committed
349
350
351
352
353
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
Allen Wang's avatar
Allen Wang committed
354
        model_variant=model_variant,
Allen Wang's avatar
Allen Wang committed
355
356
357
358
359
360
361
362
363
364
365
366
        builder=self.dataset_builder,
        skip_eval=True,
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=self.train_epochs,
        steps=self.train_steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
367
        loss_scale=loss_scale,
368
        report_metrics=False,
369
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
370
    FLAGS.params_override = json.dumps(parameters)
David Chen's avatar
David Chen committed
371
372
373
374
    if distribution_strategy == 'tpu':
      total_batch_size = num_tpus * per_replica_batch_size
    else:
      total_batch_size = num_gpus * per_replica_batch_size
Allen Wang's avatar
Allen Wang committed
375
376
377
378
379
380
381
382
383

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps

Allen Wang's avatar
Allen Wang committed
384
    super(KerasClassifierBenchmarkBase, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
385
386
387
388
389
390
391
392
393
        stats,
        wall_time_sec,
        total_batch_size=total_batch_size,
        log_steps=FLAGS.log_steps,
        warmup=warmup,
        start_time_sec=start_time_sec)

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests Keras model with 1 GPU, no distribution strategy."""
Hongkun Yu's avatar
Hongkun Yu committed
394
    self._setup()
Allen Wang's avatar
Allen Wang committed
395
396
397
398
399
400
401
402
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat',
        num_gpus=1,
        distribution_strategy='off',
        per_replica_batch_size=128)

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Tests Keras model with 1 GPU, no distribution strategy, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
403
    self._setup()
Allen Wang's avatar
Allen Wang committed
404
405
406
407
408
409
410
411
412
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        per_replica_batch_size=64)

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Tests with 1 GPU, no distribution strategy, fp16, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
413
    self._setup()
Allen Wang's avatar
Allen Wang committed
414
415
416
417
418
419
420
421
422
423
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        dtype='float16',
        per_replica_batch_size=128)

  def benchmark_1_gpu(self):
    """Tests Keras model with 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
424
    self._setup()
Allen Wang's avatar
Allen Wang committed
425
426
427
428
429
430
431
432
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_xla_1_gpu(self):
    """Tests Keras model with XLA and 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
433
    self._setup()
Allen Wang's avatar
Allen Wang committed
434
435
436
437
438
439
440
441
442
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_1_gpu_fp16(self):
    """Tests Keras model with 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
443
    self._setup()
Allen Wang's avatar
Allen Wang committed
444
445
446
447
448
449
450
451
452
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_1_gpu_fp16_dynamic(self):
    """Tests Keras model with 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
453
    self._setup()
Allen Wang's avatar
Allen Wang committed
454
455
456
457
458
459
460
461
462
463
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16_dynamic',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_xla_1_gpu_fp16(self):
    """Tests Keras model with XLA, 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
464
    self._setup()
Allen Wang's avatar
Allen Wang committed
465
466
467
468
469
470
471
472
473
474
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
475
    self._setup()
Allen Wang's avatar
Allen Wang committed
476
477
478
479
480
481
482
483
484
485
486
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_tweaked',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
487
    self._setup()
Allen Wang's avatar
Allen Wang committed
488
489
490
491
492
493
494
495
496
497
498
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_dynamic',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_8_gpu(self):
    """Tests Keras model with 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
499
    self._setup()
Allen Wang's avatar
Allen Wang committed
500
501
502
503
504
505
506
507
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
508
    self._setup()
Allen Wang's avatar
Allen Wang committed
509
510
511
512
513
514
515
516
517
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_tweaked',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        dataset_num_private_threads=14)

  def benchmark_xla_8_gpu(self):
    """Tests Keras model with XLA and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
518
    self._setup()
Allen Wang's avatar
Allen Wang committed
519
520
521
522
523
524
525
526
527
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_xla_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning, 8 GPUs, and XLA."""
Hongkun Yu's avatar
Hongkun Yu committed
528
    self._setup()
Allen Wang's avatar
Allen Wang committed
529
530
531
532
533
534
535
536
537
538
539
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_tweaked',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=24)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
540
    self._setup()
Allen Wang's avatar
Allen Wang committed
541
542
543
544
545
546
547
548
549
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_8_gpu_fp16_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
550
    self._setup()
Allen Wang's avatar
Allen Wang committed
551
552
553
554
555
556
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
557
558
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
559
560
561

  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
Hongkun Yu's avatar
Hongkun Yu committed
562
    self._setup()
Allen Wang's avatar
Allen Wang committed
563
564
565
566
567
568
569
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        loss_scale='dynamic',
570
571
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
572
573
574

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
575
    self._setup()
Allen Wang's avatar
Allen Wang committed
576
577
578
579
580
581
582
583
584
585
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
586
    self._setup()
Allen Wang's avatar
Allen Wang committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=48)

  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
    """Tests with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
    """
Hongkun Yu's avatar
Hongkun Yu committed
602
    self._setup()
Allen Wang's avatar
Allen Wang committed
603
604
605
606
607
608
609
610
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
Allen Wang's avatar
Allen Wang committed
611
        dataset_num_private_threads=48)
Allen Wang's avatar
Allen Wang committed
612
613
614

  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
615
    self._setup()
Allen Wang's avatar
Allen Wang committed
616
617
618
619
620
621
622
623
624
625
626
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        loss_scale='dynamic',
        dataset_num_private_threads=48)

Zongwei Zhou's avatar
Zongwei Zhou committed
627
628
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
629
    self._setup()
Allen Wang's avatar
Allen Wang committed
630
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
631
        experiment_name='benchmark_2x2_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
632
        dtype='bfloat16',
David Chen's avatar
David Chen committed
633
        num_tpus=8,
Allen Wang's avatar
Allen Wang committed
634
635
636
        distribution_strategy='tpu',
        per_replica_batch_size=128)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
637
638
639
640
641
642
643
644
645
  def benchmark_2x2_tpu(self):
    """Test Keras model with 2x2 TPU."""
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_2x2_tpu',
        num_tpus=8,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
646
647
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
648
    self._setup()
Allen Wang's avatar
Allen Wang committed
649
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
650
        experiment_name='benchmark_4x4_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
651
        dtype='bfloat16',
David Chen's avatar
David Chen committed
652
        num_tpus=32,
Allen Wang's avatar
Allen Wang committed
653
654
655
        distribution_strategy='tpu',
        per_replica_batch_size=128)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
656
657
658
659
660
661
662
663
664
  def benchmark_4x4_tpu(self):
    """Test Keras model with 4x4 TPU."""
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_4x4_tpu',
        num_tpus=32,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Allen Wang's avatar
Allen Wang committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
  def benchmark_2x2_tpu_bf16_mlir(self):
    """Test Keras model with 2x2 TPU, bf16."""
    self._setup()
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(
        experiment_name='benchmark_2x2_tpu_bf16_mlir',
        dtype='bfloat16',
        num_tpus=8,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

  def benchmark_4x4_tpu_bf16_mlir(self):
    """Test Keras model with 4x4 TPU, bf16."""
    self._setup()
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(
        experiment_name='benchmark_4x4_tpu_bf16_mlir',
        dtype='bfloat16',
        num_tpus=32,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
687
688
689
690
691
692
693
694
695
696
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_8x8_tpu_bf16',
        dtype='bfloat16',
        num_tpus=128,
        distribution_strategy='tpu',
        per_replica_batch_size=64)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
697
698
699
700
701
702
703
704
705
  def benchmark_8x8_tpu(self):
    """Test Keras model with 8x8 TPU."""
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_8x8_tpu',
        num_tpus=128,
        distribution_strategy='tpu',
        per_replica_batch_size=64)

Allen Wang's avatar
Allen Wang committed
706
  def fill_report_object(self, stats):
Allen Wang's avatar
Allen Wang committed
707
    super(KerasClassifierBenchmarkBase, self).fill_report_object(
Allen Wang's avatar
Allen Wang committed
708
709
710
711
712
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)


Toby Boyd's avatar
Toby Boyd committed
713
714
715
class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

David Chen's avatar
David Chen committed
716
  def __init__(self, output_dir=None, default_flags=None, tpu=None):
717
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
718
719
720
721

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
David Chen's avatar
David Chen committed
722
723
        default_flags=default_flags,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
724

725
  @benchmark_wrappers.enable_runtime_flags
726
  def _run_and_report_benchmark(self, skip_steps=None):
727
    start_time_sec = time.time()
728
    stats = resnet_imagenet_main.run(FLAGS)
729
    wall_time_sec = time.time() - start_time_sec
730
    # Number of logged step time entries that are excluded in performance
731
732
733
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps
734
735
736
737
738

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
739
        log_steps=FLAGS.log_steps,
David Chen's avatar
David Chen committed
740
741
        warmup=warmup,
        start_time_sec=start_time_sec)
Toby Boyd's avatar
Toby Boyd committed
742
743

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
744
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
745
746
747
748
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
749
    FLAGS.distribution_strategy = 'off'
750
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
751
    FLAGS.batch_size = 128
752
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
753

754
755
756
757
758
759
760
761
762
763
764
765
766
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

767
768
769
770
771
772
773
774
775
776
777
778
779
780
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

781
782
783
784
785
786
787
788
789
790
791
792
793
794
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
810
  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
811
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
812
813
814
815
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
816
    FLAGS.distribution_strategy = 'one_device'
817
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
818
    FLAGS.batch_size = 128
819
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
820

Haoyu Zhang's avatar
Haoyu Zhang committed
821
822
823
824
825
826
827
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
828
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
829
830
831
832
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
833
  def benchmark_1_gpu_fp16(self):
834
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
835
836
837
838
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
839
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
840
841
842
843
844
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

845
846
847
848
849
850
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
851
    FLAGS.distribution_strategy = 'one_device'
852
853
854
855
856
857
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
858
859
860
861
862
863
864
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
865
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
866
867
868
869
870
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

871
872
873
874
875
876
877
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
878
    FLAGS.distribution_strategy = 'one_device'
879
880
881
882
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
883
884
    self._run_and_report_benchmark()

885
886
887
888
889
890
891
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
892
    FLAGS.distribution_strategy = 'one_device'
893
894
895
896
897
898
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
899
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
900
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
901
902
903
904
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
905
    FLAGS.distribution_strategy = 'mirrored'
906
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Ruomei Yan's avatar
Ruomei Yan committed
907
    FLAGS.batch_size = 128 * 8  # 8 GPUs
908
    self._run_and_report_benchmark()
909

Pankaj Kanwar's avatar
Pankaj Kanwar committed
910
911
912
913
914
915
916
917
918
919
920
  def benchmark_8_gpu_fp32_no_tf32(self):
    """Test Keras model with 8 GPUs.Runs in FP32 by disabling TF32 execution."""
    self._setup()
    tf.config.experimental.enable_tensor_float_32_execution(False)
    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp32_no_tf32')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

921
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
922
    """Test Keras model with manual config tuning and 8 GPUs."""
923
924
925
926
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
927
    FLAGS.distribution_strategy = 'mirrored'
928
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
929
    FLAGS.batch_size = 128 * 8  # 8 GPUs
930
    FLAGS.datasets_num_private_threads = 14
931
932
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
933
934
935
936
937
938
939
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
940
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
941
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
Ruomei Yan's avatar
Ruomei Yan committed
942
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
943
944
    self._run_and_report_benchmark()

945
946
947
948
949
950
951
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
952
    FLAGS.distribution_strategy = 'mirrored'
953
954
955
956
957
958
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
959
  def benchmark_8_gpu_fp16(self):
960
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
961
962
963
    self._setup()

    FLAGS.num_gpus = 8
964
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
965
    FLAGS.enable_eager = True
966
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
967
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
Ruomei Yan's avatar
Ruomei Yan committed
968
    FLAGS.batch_size = 256 * 8  # 8 GPUs
Reed's avatar
Reed committed
969
970
    self._run_and_report_benchmark()

971
  def benchmark_8_gpu_fp16_tweaked(self):
972
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
973
974
975
976
977
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
978
    FLAGS.distribution_strategy = 'mirrored'
979
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
980
    FLAGS.batch_size = 256 * 8  # 8 GPUs
981
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
982
    FLAGS.datasets_num_private_threads = 40
983
984
    self._run_and_report_benchmark()

985
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
986
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
987
988
989
990
991
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
992
    FLAGS.distribution_strategy = 'mirrored'
993
994
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
995
    FLAGS.batch_size = 256 * 8  # 8 GPUs
996
997
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
998
    FLAGS.datasets_num_private_threads = 40
999
1000
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
1001
  def benchmark_xla_8_gpu_fp16(self):
1002
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
1003
1004
1005
    self._setup()

    FLAGS.num_gpus = 8
1006
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
1007
1008
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1009
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
1010
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
Ruomei Yan's avatar
Ruomei Yan committed
1011
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1012
1013
    self._run_and_report_benchmark()

1014
1015
1016
1017
1018
1019
1020
1021
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1022
    FLAGS.distribution_strategy = 'mirrored'
1023
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
1024
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1025
1026
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
1027
1028
    self._run_and_report_benchmark()

1029
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1030
1031
1032
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1033
1034
1035
1036
1037
1038
1039
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1040
    FLAGS.distribution_strategy = 'mirrored'
1041
1042
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
1043
    FLAGS.batch_size = 256 * 8
1044
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1045
    FLAGS.datasets_num_private_threads = 48
1046
1047
1048
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1049
1050
1051
1052
1053
1054
1055
1056
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1057
    FLAGS.distribution_strategy = 'mirrored'
1058
1059
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
1060
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1061
1062
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1063
    FLAGS.datasets_num_private_threads = 48
1064
1065
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1066
1067
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
David Chen's avatar
David Chen committed
1068
1069
1070
1071
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1072
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16')
David Chen's avatar
David Chen committed
1073
1074
1075
    FLAGS.batch_size = 1024
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1076
1077
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
David Chen's avatar
David Chen committed
1078
1079
1080
1081
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1082
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16')
David Chen's avatar
David Chen committed
1083
1084
1085
    FLAGS.batch_size = 4096
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16')
    FLAGS.batch_size = 8192
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1096
1097
1098
1099
1100
1101
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
1102

Allen Wang's avatar
Allen Wang committed
1103
class Resnet50KerasBenchmarkSynth(KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1104
1105
  """Resnet50 synthetic benchmark tests."""

David Chen's avatar
David Chen committed
1106
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1107
1108
1109
    def_flags = {}
    def_flags['log_steps'] = 10

1110
    super(Resnet50KerasBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
1111
        model='resnet', output_dir=output_dir, default_flags=def_flags, tpu=tpu,
Allen Wang's avatar
Allen Wang committed
1112
        dataset_builder='synthetic', train_epochs=1, train_steps=110)
Toby Boyd's avatar
Toby Boyd committed
1113
1114


Allen Wang's avatar
Allen Wang committed
1115
class Resnet50KerasBenchmarkReal(KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1116
1117
  """Resnet50 real data benchmark tests."""

David Chen's avatar
David Chen committed
1118
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
1119
    data_dir = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
1120
1121
1122
    def_flags = {}
    def_flags['log_steps'] = 10

1123
    super(Resnet50KerasBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
1124
        model='resnet', output_dir=output_dir, default_flags=def_flags, tpu=tpu,
Allen Wang's avatar
Allen Wang committed
1125
        dataset_builder='records', train_epochs=1, train_steps=110,
Allen Wang's avatar
Allen Wang committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        data_dir=data_dir)


class EfficientNetKerasBenchmarkReal(KerasClassifierBenchmarkBase):
  """EfficientNet real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
    data_dir = os.path.join(root_data_dir, 'imagenet')
    def_flags = {}
    def_flags['log_steps'] = 10

    super(EfficientNetKerasBenchmarkReal, self).__init__(
        model='efficientnet', output_dir=output_dir, default_flags=def_flags,
        tpu=tpu, dataset_builder='records', train_epochs=1, train_steps=110,
Allen Wang's avatar
Allen Wang committed
1140
        data_dir=data_dir)
1141

Allen Wang's avatar
Allen Wang committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
  def benchmark_2x2_tpu_b7_bf16(self):
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_b7_2x2_tpu_bf16',
        model_variant='efficientnet-b7',
        dtype='bfloat16',
        num_tpus=8,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

1152

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase):
  """Resnet50 real data (stored in remote storage) benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    # Defining multiple epochs overrides the train_steps setting in benchmarks.
    def_flags['train_epochs'] = 2
    # Cache dataset so performance is stable after the first epoch.
    def_flags['training_dataset_cache'] = True
    def_flags['log_steps'] = 100
1166
1167
1168
1169
    # Note that for single GPU and pure eager tests which are less likely to be
    # input bound and more stable, these tests will run for shorter time by
    # overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark
    # methods, and skip_steps in _run_and_report_benchmark().
1170
1171
1172
1173

    super(Resnet50KerasBenchmarkRemoteData, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
  def _override_flags_to_run_test_shorter(self):
    FLAGS.train_epochs = 1
    FLAGS.train_steps = 300
    FLAGS.log_steps = 10

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

1347
  @benchmark_wrappers.enable_runtime_flags
1348
  def _run_and_report_benchmark(self):
1349
1350
1351
1352
1353
1354
1355
1356
    if FLAGS.num_gpus == 1 or FLAGS.run_eagerly:
      # For single GPU and pure eager tests which are less likely to be input
      # bound and more stable, run for shorter time and use the default
      # skip_steps.
      skip_steps = None
    else:
      # skip the first epoch for performance measurement.
      skip_steps = 600
1357
    super(Resnet50KerasBenchmarkRemoteData,
1358
          self)._run_and_report_benchmark(skip_steps=skip_steps)
1359
1360


1361
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
1362
1363
1364
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
1365
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
1366

1367
    def_flags = {}
1368
    def_flags['use_trivial_model'] = True
1369
    def_flags['skip_eval'] = True
1370
    def_flags['report_accuracy_metrics'] = False
1371
    def_flags['dtype'] = 'fp16'
1372
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1373
1374
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
1375
    def_flags['distribution_strategy'] = 'mirrored'
1376

1377
    super(TrivialKerasBenchmarkReal, self).__init__(
1378
1379
1380
1381
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

1382
  @benchmark_wrappers.enable_runtime_flags
1383
1384
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
1385
    stats = resnet_imagenet_main.run(FLAGS)
1386
1387
    wall_time_sec = time.time() - start_time_sec

1388
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1389
1390
1391
1392
1393
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1394
1395
1396
1397
1398
1399
1400
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
1401
    FLAGS.batch_size = 256 * 8
1402
1403
1404
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1405
  def fill_report_object(self, stats):
1406
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1407
1408
1409
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1410
1411


1412
1413
1414
1415
class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark):
  """Resnet50 distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1416
    flag_methods = [classifier_trainer.define_imagenet_keras_flags]
1417
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
    super(Resnet50MultiWorkerKerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.data_dir = self.data_dir
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1435
    FLAGS.datasets_num_private_threads = 32
1436
1437
1438
1439
1440
1441
1442
1443
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

1444
  @benchmark_wrappers.enable_runtime_flags
1445
1446
1447
1448
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
Allen Wang's avatar
Allen Wang committed
1449
    stats = classifier_trainer.run(flags.FLAGS)
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1498
    FLAGS.datasets_num_private_threads = 32
1499
    FLAGS.model_dir = self._get_model_dir(
1500
1501
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1532
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1533
  """Resnet50 multi-worker synthetic data benchmark tests."""
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1547
1548
1549
1550
1551
1552
1553
class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark):
  """Resnet50 multi-worker real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
1554
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1555
1556
1557
1558
1559
1560
1561
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


Jaehong Kim's avatar
Jaehong Kim committed
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
# TODO(kimjaehong): It also should be also cover other metheods of model
# optimization techniques. In that time, this class will change to something
# like 'KerasModelOptimizationAccuracyBase'.
class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for pruning method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """A accuracy benchmark class for pruning method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['pruning_method'] = 'polynomial_decay'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasPruningAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasPruningAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.00007,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'mobilenet_v1')),
        'pruning_begin_step': 0,
        'pruning_end_step': 100000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(MobilenetV1KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1])


class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for resnet50 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.0000039,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'resnet50')),
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(Resnet50KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1])


class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Pruning method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
        'train_steps': 110,
        'log_steps': 10,
        'pruning_method': 'polynomial_decay',
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    })
    super(KerasPruningBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
    }
    super(MobilenetV1KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for resnet50."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
    }
    super(Resnet50KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
class KerasClusteringAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for clustering method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """An accuracy benchmark class for clustering method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['clustering_method'] = 'selective_clustering'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    default_flags['model'] = 'mobilenet_pretrained'
    default_flags['optimizer'] = 'mobilenet_fine_tune'

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasClusteringAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'MOBILENET_V1_FINETUNE_CLUSTERING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'MOBILENET_V1_FINETUNE_CLUSTERING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasClusteringAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasClusteringAccuracy(KerasClusteringAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with clustering method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet_pretrained',
        'optimizer': 'mobilenet_fine_tune',
    }
    super(MobilenetV1KerasClusteringAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasClusteringAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_CLUSTERING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_CLUSTERING'][1])


class KerasClusteringBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Clustering method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
1827
        'clustering_method': 'selective_clustering',
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
        'train_steps': 110,
        'log_steps': 10,
    })
    super(KerasClusteringBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasClusteringBenchmarkReal(KerasClusteringBenchmarkRealBase):
  """Clustering method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet_pretrained',
        'optimizer': 'mobilenet_fine_tune',
    }
    super(MobilenetV1KerasClusteringBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1847
1848
if __name__ == '__main__':
  tf.test.main()