keras_imagenet_benchmark.py 68 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
# Lint as: python3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

Allen Wang's avatar
Allen Wang committed
19
import json
20
import os
21
import time
22

Allen Wang's avatar
Allen Wang committed
23
24
from typing import Any, MutableMapping, Optional

25
from absl import flags
26
import tensorflow as tf  # pylint: disable=g-bad-import-order
27

28
from official.benchmark import keras_benchmark
29
from official.utils.testing import benchmark_wrappers
Allen Wang's avatar
Allen Wang committed
30
from official.vision.image_classification import classifier_trainer
31
from official.vision.image_classification.resnet import resnet_imagenet_main
32

Toby Boyd's avatar
Toby Boyd committed
33
34
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
35

Jaehong Kim's avatar
Jaehong Kim committed
36
37
38
39
40
41
42
43
44
45
MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65
MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68

# Range of top-1 accracies for model optimization techniques.
# Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY).
MODEL_OPTIMIZATION_TOP_1_ACCURACY = {
    'RESNET50_FINETUNE_PRUNING': (0.76, 0.77),
    'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68),
}

Toby Boyd's avatar
Toby Boyd committed
46
FLAGS = flags.FLAGS
47
48


Allen Wang's avatar
Allen Wang committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def _get_classifier_parameters(
    num_gpus: int = 0,
    builder: str = 'records',
    skip_eval: bool = False,
    distribution_strategy: str = 'mirrored',
    per_replica_batch_size: int = 128,
    epochs: int = 90,
    steps: int = 0,
    epochs_between_evals: int = 1,
    dtype: str = 'float32',
    enable_xla: bool = False,
    run_eagerly: bool = False,
    gpu_thread_mode: Optional[str] = None,
    dataset_num_private_threads: Optional[int] = None,
    loss_scale: Optional[str] = None) -> MutableMapping[str, Any]:
  """Gets classifier trainer's ResNet parameters."""
  return {
      'runtime': {
          'num_gpus': num_gpus,
          'distribution_strategy': distribution_strategy,
          'run_eagerly': run_eagerly,
          'enable_xla': enable_xla,
          'dataset_num_private_threads': dataset_num_private_threads,
          'gpu_thread_mode': gpu_thread_mode,
          'loss_scale': loss_scale,
      },
      'train_dataset': {
          'builder': builder,
          'use_per_replica_batch_size': True,
          'batch_size': per_replica_batch_size,
          'image_size': 224,
          'dtype': dtype,
      },
      'validation_dataset': {
          'builder': builder,
          'batch_size': per_replica_batch_size,
          'use_per_replica_batch_size': True,
          'image_size': 224,
          'dtype': dtype,
      },
      'train': {
          'epochs': epochs,
          'steps': steps,
          'callbacks': {
              'enable_tensorboard': False,
              'enable_checkpoint_and_export': False,
              'enable_time_history': True,
          },
      },
      'evaluation': {
          'epochs_between_evals': epochs_between_evals,
          'skip_eval': skip_eval,
      },
  }


Toby Boyd's avatar
Toby Boyd committed
105
106
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
107

Allen Wang's avatar
Allen Wang committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  def __init__(self,
               output_dir: Optional[str] = None,
               root_data_dir: Optional[str] = None,
               **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [classifier_trainer.define_classifier_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
125
    super(Resnet50KerasAccuracy, self).__init__(
Allen Wang's avatar
Allen Wang committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        output_dir=output_dir, flag_methods=flag_methods)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs: int = 90,
      steps: int = 0,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    self._setup()
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=epochs,
        steps=steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        run_eagerly=run_eagerly,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
        loss_scale=loss_scale)
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

173
    super(Resnet50KerasAccuracy, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
174
175
176
177
178
179
180
181
182
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=total_batch_size,
        log_steps=100)

  def benchmark_8_gpu(self):
    """Tests Keras model with eager, dist_strat and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
183
184
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
185
186
187
188
189
190
191
192
193
194
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        per_replica_batch_size=128,
        epochs=90,
        epochs_between_evals=10,
        dtype='float32',
        dataset_num_private_threads=14)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with eager, dist_strat, 8 GPUs, and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
195
196
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
197
198
199
200
201
202
203
204
205
206
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
        gpu_thread_mode='gpu_private')

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
207
208
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
209
210
211
212
213
214
215
216
217
218
219
        experiment_name='benchmark_xla_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
        enable_xla=True,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
220
221
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic',
        top_1_min=0.736,
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
        loss_scale='dynamic',
        gpu_thread_mode='gpu_private')

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Jaehong Kim's avatar
Jaehong Kim committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for MobilenetV1 in Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
    super(MobilenetV1KerasAccuracy, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags={
            'model': 'mobilenet',
            'optimizer': 'mobilenet_default',
            'initial_learning_rate_per_sample': 0.00039,
        })

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY,
                                top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(MobilenetV1KerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Allen Wang's avatar
Allen Wang committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
class Resnet50KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 (classifier_trainer) benchmarks."""

  def __init__(self, output_dir=None, default_flags=None,
               tpu=None, dataset_builder='records', train_epochs=1,
               train_steps=110, data_dir=None):
    flag_methods = [classifier_trainer.define_classifier_flags]

    self.dataset_builder = dataset_builder
    self.train_epochs = train_epochs
    self.train_steps = train_steps
    self.data_dir = data_dir

    super(Resnet50KerasClassifierBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        tpu=tpu)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      skip_steps: Optional[int] = None,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    self._setup()
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        builder=self.dataset_builder,
        skip_eval=True,
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=self.train_epochs,
        steps=self.train_steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
        loss_scale=loss_scale)
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps

    super(Resnet50KerasClassifierBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=total_batch_size,
        log_steps=FLAGS.log_steps,
        warmup=warmup,
        start_time_sec=start_time_sec)

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests Keras model with 1 GPU, no distribution strategy."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat',
        num_gpus=1,
        distribution_strategy='off',
        per_replica_batch_size=128)

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Tests Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        per_replica_batch_size=64)

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Tests with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        dtype='float16',
        per_replica_batch_size=128)

  def benchmark_1_gpu(self):
    """Tests Keras model with 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_xla_1_gpu(self):
    """Tests Keras model with XLA and 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)
    self._setup()

  def benchmark_1_gpu_fp16(self):
    """Tests Keras model with 1 GPU and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_1_gpu_fp16_dynamic(self):
    """Tests Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16_dynamic',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_xla_1_gpu_fp16(self):
    """Tests Keras model with XLA, 1 GPU and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_tweaked',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_dynamic',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_graph_1_gpu(self):
    """Tests Keras model in legacy graph mode with 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_graph_xla_1_gpu(self):
    """Tests Keras model in legacy graph mode with XLA and 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_8_gpu(self):
    """Tests Keras model with 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning and 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_tweaked',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        dataset_num_private_threads=14)

  def benchmark_xla_8_gpu(self):
    """Tests Keras model with XLA and 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_xla_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_tweaked',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=24)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with 8 GPUs and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_8_gpu_fp16_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, and manual config tuning."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        loss_scale='dynamic',
        gpu_thread_mode='gpu_private')

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, 8 GPUs and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=48)

  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
    """Tests with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
    """
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        steps=310)

  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        loss_scale='dynamic',
        dataset_num_private_threads=48)

  def benchmark_graph_8_gpu(self):
    """Tests Keras model in legacy graph mode with 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_graph_xla_8_gpu(self):
    """Tests Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_2x2_tpu_fp16(self):
    """Test Keras model with 2x2 TPU, fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_2x2_tpu_fp16',
        dtype='bfloat16',
        distribution_strategy='tpu',
        per_replica_batch_size=128)

  def benchmark_4x4_tpu_fp16(self):
    """Test Keras model with 4x4 TPU, fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_4x4_tpu_fp16',
        dtype='bfloat16',
        distribution_strategy='tpu',
        per_replica_batch_size=128)

  def fill_report_object(self, stats):
    super(Resnet50KerasClassifierBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)


Toby Boyd's avatar
Toby Boyd committed
643
644
645
class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

David Chen's avatar
David Chen committed
646
  def __init__(self, output_dir=None, default_flags=None, tpu=None):
647
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
648
649
650
651

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
David Chen's avatar
David Chen committed
652
653
        default_flags=default_flags,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
654

655
  @benchmark_wrappers.enable_runtime_flags
656
  def _run_and_report_benchmark(self, skip_steps=None):
657
    start_time_sec = time.time()
658
    stats = resnet_imagenet_main.run(FLAGS)
659
    wall_time_sec = time.time() - start_time_sec
660
    # Number of logged step time entries that are excluded in performance
661
662
663
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps
664
665
666
667
668

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
669
        log_steps=FLAGS.log_steps,
David Chen's avatar
David Chen committed
670
671
        warmup=warmup,
        start_time_sec=start_time_sec)
Toby Boyd's avatar
Toby Boyd committed
672
673

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
674
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
675
676
677
678
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
679
    FLAGS.distribution_strategy = 'off'
680
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
681
    FLAGS.batch_size = 128
682
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
683

684
685
686
687
688
689
690
691
692
693
694
695
696
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

697
698
699
700
701
702
703
704
705
706
707
708
709
710
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

711
712
713
714
715
716
717
718
719
720
721
722
723
724
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
740
  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
741
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
742
743
744
745
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
746
    FLAGS.distribution_strategy = 'off'
747
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
748
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
749
    # due to its reliance on v1 cond.
750
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
751
752

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
753
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
754
755
756
757
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
758
    FLAGS.distribution_strategy = 'one_device'
759
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
760
    FLAGS.batch_size = 128
761
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
762

763
764
765
766
767
768
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
769
    FLAGS.dtype = 'fp16'
770
    FLAGS.fp16_implementation = 'graph_rewrite'
771
    FLAGS.distribution_strategy = 'one_device'
772
773
774
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()
775

Haoyu Zhang's avatar
Haoyu Zhang committed
776
777
778
779
780
781
782
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
783
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
784
785
786
787
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

788
789
790
791
792
793
  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
794
    FLAGS.dtype = 'fp16'
795
    FLAGS.fp16_implementation = 'graph_rewrite'
796
    FLAGS.enable_xla = True
797
    FLAGS.distribution_strategy = 'one_device'
798
799
800
801
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
802
  def benchmark_1_gpu_fp16(self):
803
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
804
805
806
807
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
808
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
809
810
811
812
813
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

814
815
816
817
818
819
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
820
    FLAGS.distribution_strategy = 'one_device'
821
822
823
824
825
826
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
827
828
829
830
831
832
833
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
834
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
835
836
837
838
839
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

840
841
842
843
844
845
846
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
847
    FLAGS.distribution_strategy = 'one_device'
848
849
850
851
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
852
853
    self._run_and_report_benchmark()

854
855
856
857
858
859
860
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
861
    FLAGS.distribution_strategy = 'one_device'
862
863
864
865
866
867
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
868
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
869
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
870
871
872
873
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
874
    FLAGS.distribution_strategy = 'one_device'
875
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
876
    FLAGS.batch_size = 128
877
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
878

Haoyu Zhang's avatar
Haoyu Zhang committed
879
880
881
882
883
884
885
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
886
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
887
888
889
890
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

891
892
893
894
895
  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
896
    FLAGS.dtype = 'fp16'
897
    FLAGS.enable_eager = False
898
    FLAGS.distribution_strategy = 'one_device'
899
900
901
902
903
904
905
906
907
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
908
    FLAGS.dtype = 'fp16'
909
910
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
911
    FLAGS.distribution_strategy = 'one_device'
912
913
914
915
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

916
  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
917
    """Test Keras model in legacy graph with 1 GPU, fp16, XLA, and tuning."""
918
919
920
921
922
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
923
    FLAGS.distribution_strategy = 'one_device'
924
925
926
927
928
929
930
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
931
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
932
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
933
934
935
936
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
937
    FLAGS.distribution_strategy = 'mirrored'
938
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
939
    FLAGS.batch_size = 128 * 8  # 8 GPUs
940
    self._run_and_report_benchmark()
941

942
943
944
945
946
947
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
948
    FLAGS.dtype = 'fp16'
949
    FLAGS.fp16_implementation = 'graph_rewrite'
950
    FLAGS.distribution_strategy = 'mirrored'
951
952
953
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
954

955
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
956
    """Test Keras model with manual config tuning and 8 GPUs."""
957
958
959
960
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
961
    FLAGS.distribution_strategy = 'mirrored'
962
963
964
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.datasets_num_private_threads = 14
965
966
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
967
968
969
970
971
972
973
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
974
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
975
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
976
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
977
978
    self._run_and_report_benchmark()

979
980
981
982
983
984
  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
985
    FLAGS.dtype = 'fp16'
986
    FLAGS.fp16_implementation = 'graph_rewrite'
987
    FLAGS.enable_xla = True
988
    FLAGS.distribution_strategy = 'mirrored'
989
990
991
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
992

993
994
995
996
997
998
999
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1000
    FLAGS.distribution_strategy = 'mirrored'
1001
1002
1003
1004
1005
1006
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
1007
  def benchmark_8_gpu_fp16(self):
1008
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
1009
1010
1011
    self._setup()

    FLAGS.num_gpus = 8
1012
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
1013
    FLAGS.enable_eager = True
1014
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
1015
1016
1017
1018
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

1019
  def benchmark_8_gpu_fp16_tweaked(self):
1020
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
1021
1022
1023
1024
1025
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
1026
    FLAGS.distribution_strategy = 'mirrored'
1027
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
1028
1029
1030
1031
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1032
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
1033
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
1034
1035
1036
1037
1038
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
1039
    FLAGS.distribution_strategy = 'mirrored'
1040
1041
1042
1043
1044
1045
1046
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
1047
  def benchmark_xla_8_gpu_fp16(self):
1048
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
1049
1050
1051
    self._setup()

    FLAGS.num_gpus = 8
1052
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
1053
1054
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1055
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
1056
1057
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1058
1059
    self._run_and_report_benchmark()

1060
1061
1062
1063
1064
1065
1066
1067
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1068
    FLAGS.distribution_strategy = 'mirrored'
1069
1070
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1071
1072
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
1073
1074
    self._run_and_report_benchmark()

1075
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1076
1077
1078
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1079
1080
1081
1082
1083
1084
1085
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1086
    FLAGS.distribution_strategy = 'mirrored'
1087
1088
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
1089
    FLAGS.batch_size = 256 * 8
1090
1091
1092
1093
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1094
1095
1096
1097
1098
1099
1100
1101
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1102
    FLAGS.distribution_strategy = 'mirrored'
1103
1104
1105
1106
1107
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1108
    FLAGS.datasets_num_private_threads = 48
1109
1110
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1111
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1112
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
1113
1114
1115
1116
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
1117
    FLAGS.distribution_strategy = 'mirrored'
1118
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
1119
    FLAGS.batch_size = 128 * 8  # 8 GPUs
1120
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
1121

Haoyu Zhang's avatar
Haoyu Zhang committed
1122
1123
1124
1125
1126
1127
1128
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1129
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
1130
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
1131
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
1132
1133
    self._run_and_report_benchmark()

1134
1135
1136
1137
1138
1139
1140
  def benchmark_graph_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
1141
    FLAGS.distribution_strategy = 'mirrored'
1142
1143
1144
1145
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

1146
1147
1148
1149
1150
1151
1152
1153
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1154
    FLAGS.distribution_strategy = 'mirrored'
1155
1156
1157
1158
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

1159
  def benchmark_graph_8_gpu_fp16_tweaked(self):
1160
    """Test Keras model in legacy graph mode, tuning, 8 GPUs, and FP16."""
1161
1162
1163
1164
1165
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
1166
    FLAGS.distribution_strategy = 'mirrored'
1167
1168
1169
1170
1171
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1172
  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
1173
    """Test Keras model in legacy graph tuning, XLA_FP16, 8 GPUs and fp16."""
1174
1175
1176
1177
1178
1179
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1180
    FLAGS.distribution_strategy = 'mirrored'
1181
1182
1183
1184
1185
1186
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1187
  def benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1188
1189
1190
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1191
1192
1193
1194
1195
1196
1197
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1198
    FLAGS.distribution_strategy = 'mirrored'
1199
1200
1201
1202
1203
1204
1205
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1206
1207
1208
1209
1210
1211
1212
  def benchmark_graph_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
1213
    FLAGS.distribution_strategy = 'mirrored'
1214
1215
1216
1217
1218
1219
1220
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1221
1222
1223
1224
1225
1226
1227
1228
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1229
    FLAGS.distribution_strategy = 'mirrored'
1230
1231
1232
1233
1234
1235
1236
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

David Chen's avatar
David Chen committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
  def benchmark_2x2_tpu_fp16(self):
    """Test Keras model with 2x2 TPU, fp16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_fp16')
    FLAGS.batch_size = 1024
    self._run_and_report_benchmark()

  def benchmark_4x4_tpu_fp16(self):
    """Test Keras model with 4x4 TPU, fp16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_fp16')
    FLAGS.batch_size = 4096
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1257
1258
1259
1260
1261
1262
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
1263

Allen Wang's avatar
Allen Wang committed
1264
class Resnet50KerasBenchmarkSynth(Resnet50KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1265
1266
  """Resnet50 synthetic benchmark tests."""

David Chen's avatar
David Chen committed
1267
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1268
1269
1270
    def_flags = {}
    def_flags['log_steps'] = 10

1271
    super(Resnet50KerasBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
1272
1273
        output_dir=output_dir, default_flags=def_flags, tpu=tpu,
        dataset_builder='synthetic', train_epochs=1, train_steps=110)
Toby Boyd's avatar
Toby Boyd committed
1274
1275


Allen Wang's avatar
Allen Wang committed
1276
class Resnet50KerasBenchmarkReal(Resnet50KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1277
1278
  """Resnet50 real data benchmark tests."""

David Chen's avatar
David Chen committed
1279
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1280
1281
    data_dir = ('/readahead/200M/placer/prod/home/distbelief/'
                'imagenet-tensorflow/imagenet-2012-tfrecord')
Toby Boyd's avatar
Toby Boyd committed
1282
1283
1284
    def_flags = {}
    def_flags['log_steps'] = 10

1285
    super(Resnet50KerasBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
1286
1287
1288
        output_dir=output_dir, default_flags=def_flags, tpu=tpu,
        dataset_builder='records', train_epochs=1, train_steps=110,
        data_dir=data_dir)
1289
1290


1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase):
  """Resnet50 real data (stored in remote storage) benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    # Defining multiple epochs overrides the train_steps setting in benchmarks.
    def_flags['train_epochs'] = 2
    # Cache dataset so performance is stable after the first epoch.
    def_flags['training_dataset_cache'] = True
    def_flags['log_steps'] = 100
1304
1305
1306
1307
    # Note that for single GPU and pure eager tests which are less likely to be
    # input bound and more stable, these tests will run for shorter time by
    # overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark
    # methods, and skip_steps in _run_and_report_benchmark().
1308
1309
1310
1311

    super(Resnet50KerasBenchmarkRemoteData, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
  def _override_flags_to_run_test_shorter(self):
    FLAGS.train_epochs = 1
    FLAGS.train_steps = 300
    FLAGS.log_steps = 10

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu_no_dist_strat(self):
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
    # due to its reliance on v1 cond.
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test Keras model in legacy graph mode with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model in legacy graph with 1 GPU, fp16, XLA, and tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

1595
  @benchmark_wrappers.enable_runtime_flags
1596
  def _run_and_report_benchmark(self):
1597
1598
1599
1600
1601
1602
1603
1604
    if FLAGS.num_gpus == 1 or FLAGS.run_eagerly:
      # For single GPU and pure eager tests which are less likely to be input
      # bound and more stable, run for shorter time and use the default
      # skip_steps.
      skip_steps = None
    else:
      # skip the first epoch for performance measurement.
      skip_steps = 600
1605
    super(Resnet50KerasBenchmarkRemoteData,
1606
          self)._run_and_report_benchmark(skip_steps=skip_steps)
1607
1608


1609
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
1610
1611
1612
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
1613
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
1614

1615
    def_flags = {}
1616
    def_flags['use_trivial_model'] = True
1617
    def_flags['skip_eval'] = True
1618
    def_flags['report_accuracy_metrics'] = False
1619
    def_flags['dtype'] = 'fp16'
1620
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1621
1622
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
1623
    def_flags['distribution_strategy'] = 'mirrored'
1624

1625
    super(TrivialKerasBenchmarkReal, self).__init__(
1626
1627
1628
1629
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

1630
  @benchmark_wrappers.enable_runtime_flags
1631
1632
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
1633
    stats = resnet_imagenet_main.run(FLAGS)
1634
1635
    wall_time_sec = time.time() - start_time_sec

1636
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1637
1638
1639
1640
1641
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1642
1643
1644
1645
1646
1647
1648
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
1649
    FLAGS.batch_size = 256 * 8
1650
1651
1652
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1653
  def fill_report_object(self, stats):
1654
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1655
1656
1657
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1658
1659


1660
1661
1662
1663
class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark):
  """Resnet50 distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1664
    flag_methods = [classifier_trainer.define_imagenet_keras_flags]
1665
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
    super(Resnet50MultiWorkerKerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.data_dir = self.data_dir
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1683
    FLAGS.datasets_num_private_threads = 32
1684
1685
1686
1687
1688
1689
1690
1691
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

1692
  @benchmark_wrappers.enable_runtime_flags
1693
1694
1695
1696
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
Allen Wang's avatar
Allen Wang committed
1697
    stats = classifier_trainer.run(flags.FLAGS)
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1746
    FLAGS.datasets_num_private_threads = 32
1747
    FLAGS.model_dir = self._get_model_dir(
1748
1749
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1780
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1781
  """Resnet50 multi-worker synthetic data benchmark tests."""
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1795
1796
1797
1798
1799
1800
1801
class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark):
  """Resnet50 multi-worker real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
1802
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1803
1804
1805
1806
1807
1808
1809
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


Jaehong Kim's avatar
Jaehong Kim committed
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
# TODO(kimjaehong): It also should be also cover other metheods of model
# optimization techniques. In that time, this class will change to something
# like 'KerasModelOptimizationAccuracyBase'.
class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for pruning method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """A accuracy benchmark class for pruning method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['pruning_method'] = 'polynomial_decay'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasPruningAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasPruningAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.00007,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'mobilenet_v1')),
        'pruning_begin_step': 0,
        'pruning_end_step': 100000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(MobilenetV1KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1])


class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for resnet50 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.0000039,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'resnet50')),
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(Resnet50KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1])


class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Pruning method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
        'train_steps': 110,
        'log_steps': 10,
        'pruning_method': 'polynomial_decay',
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    })
    super(KerasPruningBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
    }
    super(MobilenetV1KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for resnet50."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
    }
    super(Resnet50KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1980
1981
if __name__ == '__main__':
  tf.test.main()