keras_imagenet_benchmark.py 67.9 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
# Lint as: python3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

Allen Wang's avatar
Allen Wang committed
19
import json
20
import os
21
import time
22

Allen Wang's avatar
Allen Wang committed
23
24
from typing import Any, MutableMapping, Optional

25
from absl import flags
26
import tensorflow as tf  # pylint: disable=g-bad-import-order
27

28
from official.benchmark import keras_benchmark
29
from official.utils.testing import benchmark_wrappers
Allen Wang's avatar
Allen Wang committed
30
from official.vision.image_classification import classifier_trainer
31
from official.vision.image_classification.resnet import resnet_imagenet_main
32

Toby Boyd's avatar
Toby Boyd committed
33
34
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
35

Jaehong Kim's avatar
Jaehong Kim committed
36
37
38
39
40
41
42
43
44
45
MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65
MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68

# Range of top-1 accracies for model optimization techniques.
# Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY).
MODEL_OPTIMIZATION_TOP_1_ACCURACY = {
    'RESNET50_FINETUNE_PRUNING': (0.76, 0.77),
    'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68),
}

Toby Boyd's avatar
Toby Boyd committed
46
FLAGS = flags.FLAGS
47
48


Allen Wang's avatar
Allen Wang committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def _get_classifier_parameters(
    num_gpus: int = 0,
    builder: str = 'records',
    skip_eval: bool = False,
    distribution_strategy: str = 'mirrored',
    per_replica_batch_size: int = 128,
    epochs: int = 90,
    steps: int = 0,
    epochs_between_evals: int = 1,
    dtype: str = 'float32',
    enable_xla: bool = False,
    run_eagerly: bool = False,
    gpu_thread_mode: Optional[str] = None,
    dataset_num_private_threads: Optional[int] = None,
    loss_scale: Optional[str] = None) -> MutableMapping[str, Any]:
  """Gets classifier trainer's ResNet parameters."""
  return {
      'runtime': {
          'num_gpus': num_gpus,
          'distribution_strategy': distribution_strategy,
          'run_eagerly': run_eagerly,
          'enable_xla': enable_xla,
          'dataset_num_private_threads': dataset_num_private_threads,
          'gpu_thread_mode': gpu_thread_mode,
          'loss_scale': loss_scale,
      },
      'train_dataset': {
          'builder': builder,
          'use_per_replica_batch_size': True,
          'batch_size': per_replica_batch_size,
          'image_size': 224,
          'dtype': dtype,
      },
      'validation_dataset': {
          'builder': builder,
          'batch_size': per_replica_batch_size,
          'use_per_replica_batch_size': True,
          'image_size': 224,
          'dtype': dtype,
      },
      'train': {
          'epochs': epochs,
          'steps': steps,
          'callbacks': {
              'enable_tensorboard': False,
              'enable_checkpoint_and_export': False,
              'enable_time_history': True,
          },
      },
      'evaluation': {
          'epochs_between_evals': epochs_between_evals,
          'skip_eval': skip_eval,
      },
  }


Toby Boyd's avatar
Toby Boyd committed
105
106
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
107

Allen Wang's avatar
Allen Wang committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  def __init__(self,
               output_dir: Optional[str] = None,
               root_data_dir: Optional[str] = None,
               **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [classifier_trainer.define_classifier_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
125
    super(Resnet50KerasAccuracy, self).__init__(
Allen Wang's avatar
Allen Wang committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        output_dir=output_dir, flag_methods=flag_methods)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs: int = 90,
      steps: int = 0,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    self._setup()
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=epochs,
        steps=steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        run_eagerly=run_eagerly,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
        loss_scale=loss_scale)
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

173
    super(Resnet50KerasAccuracy, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=total_batch_size,
        log_steps=100)

  def benchmark_8_gpu(self):
    """Tests Keras model with eager, dist_strat and 8 GPUs."""
    self._run_benchmark(
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        per_replica_batch_size=128,
        epochs=90,
        epochs_between_evals=10,
        dtype='float32',
        dataset_num_private_threads=14)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with eager, dist_strat, 8 GPUs, and fp16."""
    self._run_benchmark(
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
        gpu_thread_mode='gpu_private')

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
    self._run_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
        enable_xla=True,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
    self._run_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic',
        top_1_min=0.736,
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
        loss_scale='dynamic',
        gpu_thread_mode='gpu_private')

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Jaehong Kim's avatar
Jaehong Kim committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for MobilenetV1 in Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
    super(MobilenetV1KerasAccuracy, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags={
            'model': 'mobilenet',
            'optimizer': 'mobilenet_default',
            'initial_learning_rate_per_sample': 0.00039,
        })

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY,
                                top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(MobilenetV1KerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Allen Wang's avatar
Allen Wang committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
class Resnet50KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 (classifier_trainer) benchmarks."""

  def __init__(self, output_dir=None, default_flags=None,
               tpu=None, dataset_builder='records', train_epochs=1,
               train_steps=110, data_dir=None):
    flag_methods = [classifier_trainer.define_classifier_flags]

    self.dataset_builder = dataset_builder
    self.train_epochs = train_epochs
    self.train_steps = train_steps
    self.data_dir = data_dir

    super(Resnet50KerasClassifierBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        tpu=tpu)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      skip_steps: Optional[int] = None,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    self._setup()
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        builder=self.dataset_builder,
        skip_eval=True,
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=self.train_epochs,
        steps=self.train_steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
        loss_scale=loss_scale)
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps

    super(Resnet50KerasClassifierBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=total_batch_size,
        log_steps=FLAGS.log_steps,
        warmup=warmup,
        start_time_sec=start_time_sec)

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests Keras model with 1 GPU, no distribution strategy."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat',
        num_gpus=1,
        distribution_strategy='off',
        per_replica_batch_size=128)

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Tests Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        per_replica_batch_size=64)

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Tests with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        dtype='float16',
        per_replica_batch_size=128)

  def benchmark_1_gpu(self):
    """Tests Keras model with 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_xla_1_gpu(self):
    """Tests Keras model with XLA and 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)
    self._setup()

  def benchmark_1_gpu_fp16(self):
    """Tests Keras model with 1 GPU and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_1_gpu_fp16_dynamic(self):
    """Tests Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16_dynamic',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_xla_1_gpu_fp16(self):
    """Tests Keras model with XLA, 1 GPU and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_tweaked',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_dynamic',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_graph_1_gpu(self):
    """Tests Keras model in legacy graph mode with 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_graph_xla_1_gpu(self):
    """Tests Keras model in legacy graph mode with XLA and 1 GPU."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_8_gpu(self):
    """Tests Keras model with 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning and 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_tweaked',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        dataset_num_private_threads=14)

  def benchmark_xla_8_gpu(self):
    """Tests Keras model with XLA and 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_xla_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_tweaked',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=24)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with 8 GPUs and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_8_gpu_fp16_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, and manual config tuning."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        loss_scale='dynamic',
        gpu_thread_mode='gpu_private')

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, 8 GPUs and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=48)

  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
    """Tests with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
    """
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        steps=310)

  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        loss_scale='dynamic',
        dataset_num_private_threads=48)

  def benchmark_graph_8_gpu(self):
    """Tests Keras model in legacy graph mode with 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_graph_xla_8_gpu(self):
    """Tests Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_graph_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_2x2_tpu_fp16(self):
    """Test Keras model with 2x2 TPU, fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_2x2_tpu_fp16',
        dtype='bfloat16',
        distribution_strategy='tpu',
        per_replica_batch_size=128)

  def benchmark_4x4_tpu_fp16(self):
    """Test Keras model with 4x4 TPU, fp16."""
    self._run_and_report_benchmark(
        experiment_name='benchmark_4x4_tpu_fp16',
        dtype='bfloat16',
        distribution_strategy='tpu',
        per_replica_batch_size=128)

  def fill_report_object(self, stats):
    super(Resnet50KerasClassifierBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)


Toby Boyd's avatar
Toby Boyd committed
639
640
641
class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

David Chen's avatar
David Chen committed
642
  def __init__(self, output_dir=None, default_flags=None, tpu=None):
643
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
644
645
646
647

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
David Chen's avatar
David Chen committed
648
649
        default_flags=default_flags,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
650

651
  @benchmark_wrappers.enable_runtime_flags
652
  def _run_and_report_benchmark(self, skip_steps=None):
653
    start_time_sec = time.time()
654
    stats = resnet_imagenet_main.run(FLAGS)
655
    wall_time_sec = time.time() - start_time_sec
656
    # Number of logged step time entries that are excluded in performance
657
658
659
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps
660
661
662
663
664

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
665
        log_steps=FLAGS.log_steps,
David Chen's avatar
David Chen committed
666
667
        warmup=warmup,
        start_time_sec=start_time_sec)
Toby Boyd's avatar
Toby Boyd committed
668
669

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
670
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
671
672
673
674
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
675
    FLAGS.distribution_strategy = 'off'
676
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
677
    FLAGS.batch_size = 128
678
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
679

680
681
682
683
684
685
686
687
688
689
690
691
692
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

693
694
695
696
697
698
699
700
701
702
703
704
705
706
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

707
708
709
710
711
712
713
714
715
716
717
718
719
720
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
736
  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
737
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
738
739
740
741
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
742
    FLAGS.distribution_strategy = 'off'
743
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
744
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
745
    # due to its reliance on v1 cond.
746
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
747
748

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
749
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
750
751
752
753
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
754
    FLAGS.distribution_strategy = 'one_device'
755
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
756
    FLAGS.batch_size = 128
757
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
758

759
760
761
762
763
764
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
765
    FLAGS.dtype = 'fp16'
766
    FLAGS.fp16_implementation = 'graph_rewrite'
767
    FLAGS.distribution_strategy = 'one_device'
768
769
770
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()
771

Haoyu Zhang's avatar
Haoyu Zhang committed
772
773
774
775
776
777
778
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
779
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
780
781
782
783
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

784
785
786
787
788
789
  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
790
    FLAGS.dtype = 'fp16'
791
    FLAGS.fp16_implementation = 'graph_rewrite'
792
    FLAGS.enable_xla = True
793
    FLAGS.distribution_strategy = 'one_device'
794
795
796
797
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
798
  def benchmark_1_gpu_fp16(self):
799
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
800
801
802
803
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
804
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
805
806
807
808
809
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

810
811
812
813
814
815
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
816
    FLAGS.distribution_strategy = 'one_device'
817
818
819
820
821
822
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
823
824
825
826
827
828
829
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
830
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
831
832
833
834
835
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

836
837
838
839
840
841
842
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
843
    FLAGS.distribution_strategy = 'one_device'
844
845
846
847
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
848
849
    self._run_and_report_benchmark()

850
851
852
853
854
855
856
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
857
    FLAGS.distribution_strategy = 'one_device'
858
859
860
861
862
863
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
864
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
865
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
866
867
868
869
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
870
    FLAGS.distribution_strategy = 'one_device'
871
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
872
    FLAGS.batch_size = 128
873
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
874

Haoyu Zhang's avatar
Haoyu Zhang committed
875
876
877
878
879
880
881
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
882
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
883
884
885
886
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

887
888
889
890
891
  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
892
    FLAGS.dtype = 'fp16'
893
    FLAGS.enable_eager = False
894
    FLAGS.distribution_strategy = 'one_device'
895
896
897
898
899
900
901
902
903
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
904
    FLAGS.dtype = 'fp16'
905
906
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
907
    FLAGS.distribution_strategy = 'one_device'
908
909
910
911
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

912
  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
913
    """Test Keras model in legacy graph with 1 GPU, fp16, XLA, and tuning."""
914
915
916
917
918
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
919
    FLAGS.distribution_strategy = 'one_device'
920
921
922
923
924
925
926
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
927
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
928
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
929
930
931
932
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
933
    FLAGS.distribution_strategy = 'mirrored'
934
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
935
    FLAGS.batch_size = 128 * 8  # 8 GPUs
936
    self._run_and_report_benchmark()
937

938
939
940
941
942
943
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
944
    FLAGS.dtype = 'fp16'
945
    FLAGS.fp16_implementation = 'graph_rewrite'
946
    FLAGS.distribution_strategy = 'mirrored'
947
948
949
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
950

951
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
952
    """Test Keras model with manual config tuning and 8 GPUs."""
953
954
955
956
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
957
    FLAGS.distribution_strategy = 'mirrored'
958
959
960
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.datasets_num_private_threads = 14
961
962
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
963
964
965
966
967
968
969
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
970
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
971
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
972
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
973
974
    self._run_and_report_benchmark()

975
976
977
978
979
980
  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
981
    FLAGS.dtype = 'fp16'
982
    FLAGS.fp16_implementation = 'graph_rewrite'
983
    FLAGS.enable_xla = True
984
    FLAGS.distribution_strategy = 'mirrored'
985
986
987
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
988

989
990
991
992
993
994
995
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
996
    FLAGS.distribution_strategy = 'mirrored'
997
998
999
1000
1001
1002
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
1003
  def benchmark_8_gpu_fp16(self):
1004
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
1005
1006
1007
    self._setup()

    FLAGS.num_gpus = 8
1008
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
1009
    FLAGS.enable_eager = True
1010
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
1011
1012
1013
1014
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

1015
  def benchmark_8_gpu_fp16_tweaked(self):
1016
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
1017
1018
1019
1020
1021
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
1022
    FLAGS.distribution_strategy = 'mirrored'
1023
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
1024
1025
1026
1027
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1028
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
1029
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
1030
1031
1032
1033
1034
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
1035
    FLAGS.distribution_strategy = 'mirrored'
1036
1037
1038
1039
1040
1041
1042
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
1043
  def benchmark_xla_8_gpu_fp16(self):
1044
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
1045
1046
1047
    self._setup()

    FLAGS.num_gpus = 8
1048
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
1049
1050
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1051
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
1052
1053
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1054
1055
    self._run_and_report_benchmark()

1056
1057
1058
1059
1060
1061
1062
1063
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1064
    FLAGS.distribution_strategy = 'mirrored'
1065
1066
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1067
1068
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
1069
1070
    self._run_and_report_benchmark()

1071
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1072
1073
1074
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1075
1076
1077
1078
1079
1080
1081
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1082
    FLAGS.distribution_strategy = 'mirrored'
1083
1084
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
1085
    FLAGS.batch_size = 256 * 8
1086
1087
1088
1089
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1090
1091
1092
1093
1094
1095
1096
1097
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1098
    FLAGS.distribution_strategy = 'mirrored'
1099
1100
1101
1102
1103
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1104
    FLAGS.datasets_num_private_threads = 48
1105
1106
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1107
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1108
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
1109
1110
1111
1112
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
1113
    FLAGS.distribution_strategy = 'mirrored'
1114
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
1115
    FLAGS.batch_size = 128 * 8  # 8 GPUs
1116
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
1117

Haoyu Zhang's avatar
Haoyu Zhang committed
1118
1119
1120
1121
1122
1123
1124
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1125
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
1126
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
1127
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
1128
1129
    self._run_and_report_benchmark()

1130
1131
1132
1133
1134
1135
1136
  def benchmark_graph_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
1137
    FLAGS.distribution_strategy = 'mirrored'
1138
1139
1140
1141
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

1142
1143
1144
1145
1146
1147
1148
1149
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1150
    FLAGS.distribution_strategy = 'mirrored'
1151
1152
1153
1154
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

1155
  def benchmark_graph_8_gpu_fp16_tweaked(self):
1156
    """Test Keras model in legacy graph mode, tuning, 8 GPUs, and FP16."""
1157
1158
1159
1160
1161
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
1162
    FLAGS.distribution_strategy = 'mirrored'
1163
1164
1165
1166
1167
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1168
  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
1169
    """Test Keras model in legacy graph tuning, XLA_FP16, 8 GPUs and fp16."""
1170
1171
1172
1173
1174
1175
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1176
    FLAGS.distribution_strategy = 'mirrored'
1177
1178
1179
1180
1181
1182
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1183
  def benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1184
1185
1186
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1187
1188
1189
1190
1191
1192
1193
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1194
    FLAGS.distribution_strategy = 'mirrored'
1195
1196
1197
1198
1199
1200
1201
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1202
1203
1204
1205
1206
1207
1208
  def benchmark_graph_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
1209
    FLAGS.distribution_strategy = 'mirrored'
1210
1211
1212
1213
1214
1215
1216
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1217
1218
1219
1220
1221
1222
1223
1224
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
1225
    FLAGS.distribution_strategy = 'mirrored'
1226
1227
1228
1229
1230
1231
1232
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

David Chen's avatar
David Chen committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
  def benchmark_2x2_tpu_fp16(self):
    """Test Keras model with 2x2 TPU, fp16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_fp16')
    FLAGS.batch_size = 1024
    self._run_and_report_benchmark()

  def benchmark_4x4_tpu_fp16(self):
    """Test Keras model with 4x4 TPU, fp16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_fp16')
    FLAGS.batch_size = 4096
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1253
1254
1255
1256
1257
1258
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
1259

Allen Wang's avatar
Allen Wang committed
1260
class Resnet50KerasBenchmarkSynth(Resnet50KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1261
1262
  """Resnet50 synthetic benchmark tests."""

David Chen's avatar
David Chen committed
1263
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1264
1265
1266
    def_flags = {}
    def_flags['log_steps'] = 10

1267
    super(Resnet50KerasBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
1268
1269
        output_dir=output_dir, default_flags=def_flags, tpu=tpu,
        dataset_builder='synthetic', train_epochs=1, train_steps=110)
Toby Boyd's avatar
Toby Boyd committed
1270
1271


Allen Wang's avatar
Allen Wang committed
1272
class Resnet50KerasBenchmarkReal(Resnet50KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1273
1274
  """Resnet50 real data benchmark tests."""

David Chen's avatar
David Chen committed
1275
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1276
1277
    data_dir = ('/readahead/200M/placer/prod/home/distbelief/'
                'imagenet-tensorflow/imagenet-2012-tfrecord')
Toby Boyd's avatar
Toby Boyd committed
1278
1279
1280
    def_flags = {}
    def_flags['log_steps'] = 10

1281
    super(Resnet50KerasBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
1282
1283
1284
        output_dir=output_dir, default_flags=def_flags, tpu=tpu,
        dataset_builder='records', train_epochs=1, train_steps=110,
        data_dir=data_dir)
1285
1286


1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase):
  """Resnet50 real data (stored in remote storage) benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    # Defining multiple epochs overrides the train_steps setting in benchmarks.
    def_flags['train_epochs'] = 2
    # Cache dataset so performance is stable after the first epoch.
    def_flags['training_dataset_cache'] = True
    def_flags['log_steps'] = 100
1300
1301
1302
1303
    # Note that for single GPU and pure eager tests which are less likely to be
    # input bound and more stable, these tests will run for shorter time by
    # overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark
    # methods, and skip_steps in _run_and_report_benchmark().
1304
1305
1306
1307

    super(Resnet50KerasBenchmarkRemoteData, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
  def _override_flags_to_run_test_shorter(self):
    FLAGS.train_epochs = 1
    FLAGS.train_steps = 300
    FLAGS.log_steps = 10

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu_no_dist_strat(self):
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
    # due to its reliance on v1 cond.
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test Keras model in legacy graph mode with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model in legacy graph with 1 GPU, fp16, XLA, and tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

1591
  @benchmark_wrappers.enable_runtime_flags
1592
  def _run_and_report_benchmark(self):
1593
1594
1595
1596
1597
1598
1599
1600
    if FLAGS.num_gpus == 1 or FLAGS.run_eagerly:
      # For single GPU and pure eager tests which are less likely to be input
      # bound and more stable, run for shorter time and use the default
      # skip_steps.
      skip_steps = None
    else:
      # skip the first epoch for performance measurement.
      skip_steps = 600
1601
    super(Resnet50KerasBenchmarkRemoteData,
1602
          self)._run_and_report_benchmark(skip_steps=skip_steps)
1603
1604


1605
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
1606
1607
1608
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
1609
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
1610

1611
    def_flags = {}
1612
    def_flags['use_trivial_model'] = True
1613
    def_flags['skip_eval'] = True
1614
    def_flags['report_accuracy_metrics'] = False
1615
    def_flags['dtype'] = 'fp16'
1616
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1617
1618
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
1619
    def_flags['distribution_strategy'] = 'mirrored'
1620

1621
    super(TrivialKerasBenchmarkReal, self).__init__(
1622
1623
1624
1625
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

1626
  @benchmark_wrappers.enable_runtime_flags
1627
1628
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
1629
    stats = resnet_imagenet_main.run(FLAGS)
1630
1631
    wall_time_sec = time.time() - start_time_sec

1632
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1633
1634
1635
1636
1637
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1638
1639
1640
1641
1642
1643
1644
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
1645
    FLAGS.batch_size = 256 * 8
1646
1647
1648
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1649
  def fill_report_object(self, stats):
1650
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1651
1652
1653
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1654
1655


1656
1657
1658
1659
class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark):
  """Resnet50 distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1660
    flag_methods = [classifier_trainer.define_imagenet_keras_flags]
1661
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
    super(Resnet50MultiWorkerKerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.data_dir = self.data_dir
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1679
    FLAGS.datasets_num_private_threads = 32
1680
1681
1682
1683
1684
1685
1686
1687
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

1688
  @benchmark_wrappers.enable_runtime_flags
1689
1690
1691
1692
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
Allen Wang's avatar
Allen Wang committed
1693
    stats = classifier_trainer.run(flags.FLAGS)
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1742
    FLAGS.datasets_num_private_threads = 32
1743
    FLAGS.model_dir = self._get_model_dir(
1744
1745
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1776
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1777
  """Resnet50 multi-worker synthetic data benchmark tests."""
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1791
1792
1793
1794
1795
1796
1797
class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark):
  """Resnet50 multi-worker real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
1798
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1799
1800
1801
1802
1803
1804
1805
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


Jaehong Kim's avatar
Jaehong Kim committed
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
# TODO(kimjaehong): It also should be also cover other metheods of model
# optimization techniques. In that time, this class will change to something
# like 'KerasModelOptimizationAccuracyBase'.
class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for pruning method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """A accuracy benchmark class for pruning method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['pruning_method'] = 'polynomial_decay'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasPruningAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasPruningAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.00007,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'mobilenet_v1')),
        'pruning_begin_step': 0,
        'pruning_end_step': 100000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(MobilenetV1KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1])


class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for resnet50 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.0000039,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'resnet50')),
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(Resnet50KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1])


class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Pruning method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
        'train_steps': 110,
        'log_steps': 10,
        'pruning_method': 'polynomial_decay',
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    })
    super(KerasPruningBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
    }
    super(MobilenetV1KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for resnet50."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
    }
    super(Resnet50KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1976
1977
if __name__ == '__main__':
  tf.test.main()