keras_imagenet_benchmark.py 60 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
# Lint as: python3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
Hongkun Yu's avatar
Hongkun Yu committed
17
# pylint: disable=line-too-long
18
19
from __future__ import print_function

Allen Wang's avatar
Allen Wang committed
20
import json
21
import os
22
import time
23

Allen Wang's avatar
Allen Wang committed
24
25
from typing import Any, MutableMapping, Optional

26
from absl import flags
27
import tensorflow as tf  # pylint: disable=g-bad-import-order
28

29
from official.benchmark import benchmark_wrappers
30
from official.benchmark import keras_benchmark
31
from official.benchmark.models import resnet_imagenet_main
Allen Wang's avatar
Allen Wang committed
32
from official.vision.image_classification import classifier_trainer
33

Toby Boyd's avatar
Toby Boyd committed
34
35
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
36

Jaehong Kim's avatar
Jaehong Kim committed
37
38
39
40
41
42
43
44
45
46
MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65
MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68

# Range of top-1 accracies for model optimization techniques.
# Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY).
MODEL_OPTIMIZATION_TOP_1_ACCURACY = {
    'RESNET50_FINETUNE_PRUNING': (0.76, 0.77),
    'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68),
}

Toby Boyd's avatar
Toby Boyd committed
47
FLAGS = flags.FLAGS
48
49


Allen Wang's avatar
Allen Wang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def _get_classifier_parameters(
    num_gpus: int = 0,
    builder: str = 'records',
    skip_eval: bool = False,
    distribution_strategy: str = 'mirrored',
    per_replica_batch_size: int = 128,
    epochs: int = 90,
    steps: int = 0,
    epochs_between_evals: int = 1,
    dtype: str = 'float32',
    enable_xla: bool = False,
    run_eagerly: bool = False,
    gpu_thread_mode: Optional[str] = None,
    dataset_num_private_threads: Optional[int] = None,
64
    loss_scale: Optional[str] = None,
65
    report_metrics: bool = True,
66
    batchnorm_spatial_persistent: bool = False) -> MutableMapping[str, Any]:
Allen Wang's avatar
Allen Wang committed
67
68
69
70
71
72
73
74
75
76
  """Gets classifier trainer's ResNet parameters."""
  return {
      'runtime': {
          'num_gpus': num_gpus,
          'distribution_strategy': distribution_strategy,
          'run_eagerly': run_eagerly,
          'enable_xla': enable_xla,
          'dataset_num_private_threads': dataset_num_private_threads,
          'gpu_thread_mode': gpu_thread_mode,
          'loss_scale': loss_scale,
77
          'batchnorm_spatial_persistent': batchnorm_spatial_persistent,
Allen Wang's avatar
Allen Wang committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
      },
      'train_dataset': {
          'builder': builder,
          'use_per_replica_batch_size': True,
          'batch_size': per_replica_batch_size,
          'image_size': 224,
          'dtype': dtype,
      },
      'validation_dataset': {
          'builder': builder,
          'batch_size': per_replica_batch_size,
          'use_per_replica_batch_size': True,
          'image_size': 224,
          'dtype': dtype,
      },
      'train': {
          'epochs': epochs,
          'steps': steps,
          'callbacks': {
              'enable_tensorboard': False,
              'enable_checkpoint_and_export': False,
              'enable_time_history': True,
          },
101
          'metrics': ['accuracy'] if report_metrics else [],
Allen Wang's avatar
Allen Wang committed
102
      },
Allen Wang's avatar
Allen Wang committed
103
104
105
106
107
      'model': {
          'loss': {
              'label_smoothing': 0.1,
          },
      },
Allen Wang's avatar
Allen Wang committed
108
109
110
111
112
113
114
      'evaluation': {
          'epochs_between_evals': epochs_between_evals,
          'skip_eval': skip_eval,
      },
  }


Toby Boyd's avatar
Toby Boyd committed
115
116
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
117

Allen Wang's avatar
Allen Wang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  def __init__(self,
               output_dir: Optional[str] = None,
               root_data_dir: Optional[str] = None,
               **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [classifier_trainer.define_classifier_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
135
    super(Resnet50KerasAccuracy, self).__init__(
Allen Wang's avatar
Allen Wang committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        output_dir=output_dir, flag_methods=flag_methods)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs: int = 90,
      steps: int = 0,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=epochs,
        steps=steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        run_eagerly=run_eagerly,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
174
        report_metrics=True,
175
176
        loss_scale=loss_scale,
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
177
178
179
180
181
182
183
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

184
    super(Resnet50KerasAccuracy, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
185
186
187
188
189
190
191
192
193
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=total_batch_size,
        log_steps=100)

  def benchmark_8_gpu(self):
    """Tests Keras model with eager, dist_strat and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
194
195
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
196
197
198
199
200
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        per_replica_batch_size=128,
        epochs=90,
        epochs_between_evals=10,
201
        dtype='float32')
Allen Wang's avatar
Allen Wang committed
202
203
204

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with eager, dist_strat, 8 GPUs, and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
205
206
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
207
208
209
210
211
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
212
        dtype='float16')
Allen Wang's avatar
Allen Wang committed
213
214
215

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
216
217
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
218
219
220
221
222
223
        experiment_name='benchmark_xla_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
224
        enable_xla=True)
Allen Wang's avatar
Allen Wang committed
225
226
227

  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
228
229
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
230
231
232
233
234
235
236
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic',
        top_1_min=0.736,
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
237
        loss_scale='dynamic')
Allen Wang's avatar
Allen Wang committed
238
239
240
241
242

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Jaehong Kim's avatar
Jaehong Kim committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for MobilenetV1 in Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
    super(MobilenetV1KerasAccuracy, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags={
            'model': 'mobilenet',
            'optimizer': 'mobilenet_default',
            'initial_learning_rate_per_sample': 0.00039,
        })

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY,
                                top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(MobilenetV1KerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Allen Wang's avatar
Allen Wang committed
302
303
class KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Classifier Trainer benchmarks."""
Allen Wang's avatar
Allen Wang committed
304

Allen Wang's avatar
Allen Wang committed
305
  def __init__(self, model, output_dir=None, default_flags=None,
Allen Wang's avatar
Allen Wang committed
306
307
308
309
               tpu=None, dataset_builder='records', train_epochs=1,
               train_steps=110, data_dir=None):
    flag_methods = [classifier_trainer.define_classifier_flags]

Allen Wang's avatar
Allen Wang committed
310
    self.model = model
Allen Wang's avatar
Allen Wang committed
311
312
313
314
315
    self.dataset_builder = dataset_builder
    self.train_epochs = train_epochs
    self.train_steps = train_steps
    self.data_dir = data_dir

Allen Wang's avatar
Allen Wang committed
316
    super(KerasClassifierBenchmarkBase, self).__init__(
Allen Wang's avatar
Allen Wang committed
317
318
319
320
321
322
323
324
325
326
327
328
329
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        tpu=tpu)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      skip_steps: Optional[int] = None,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
David Chen's avatar
David Chen committed
330
      num_tpus: int = 0,
Allen Wang's avatar
Allen Wang committed
331
332
333
334
335
336
337
338
339
340
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
Allen Wang's avatar
Allen Wang committed
341
    FLAGS.model_type = self.model
Allen Wang's avatar
Allen Wang committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        builder=self.dataset_builder,
        skip_eval=True,
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=self.train_epochs,
        steps=self.train_steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
359
        loss_scale=loss_scale,
360
        report_metrics=False,
361
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
362
    FLAGS.params_override = json.dumps(parameters)
David Chen's avatar
David Chen committed
363
364
365
366
    if distribution_strategy == 'tpu':
      total_batch_size = num_tpus * per_replica_batch_size
    else:
      total_batch_size = num_gpus * per_replica_batch_size
Allen Wang's avatar
Allen Wang committed
367
368
369
370
371
372
373
374
375

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps

Allen Wang's avatar
Allen Wang committed
376
    super(KerasClassifierBenchmarkBase, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
377
378
379
380
381
382
383
384
385
        stats,
        wall_time_sec,
        total_batch_size=total_batch_size,
        log_steps=FLAGS.log_steps,
        warmup=warmup,
        start_time_sec=start_time_sec)

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests Keras model with 1 GPU, no distribution strategy."""
Hongkun Yu's avatar
Hongkun Yu committed
386
    self._setup()
Allen Wang's avatar
Allen Wang committed
387
388
389
390
391
392
393
394
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat',
        num_gpus=1,
        distribution_strategy='off',
        per_replica_batch_size=128)

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Tests Keras model with 1 GPU, no distribution strategy, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
395
    self._setup()
Allen Wang's avatar
Allen Wang committed
396
397
398
399
400
401
402
403
404
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        per_replica_batch_size=64)

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Tests with 1 GPU, no distribution strategy, fp16, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
405
    self._setup()
Allen Wang's avatar
Allen Wang committed
406
407
408
409
410
411
412
413
414
415
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        dtype='float16',
        per_replica_batch_size=128)

  def benchmark_1_gpu(self):
    """Tests Keras model with 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
416
    self._setup()
Allen Wang's avatar
Allen Wang committed
417
418
419
420
421
422
423
424
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_xla_1_gpu(self):
    """Tests Keras model with XLA and 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
425
    self._setup()
Allen Wang's avatar
Allen Wang committed
426
427
428
429
430
431
432
433
434
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_1_gpu_fp16(self):
    """Tests Keras model with 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
435
    self._setup()
Allen Wang's avatar
Allen Wang committed
436
437
438
439
440
441
442
443
444
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_1_gpu_fp16_dynamic(self):
    """Tests Keras model with 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
445
    self._setup()
Allen Wang's avatar
Allen Wang committed
446
447
448
449
450
451
452
453
454
455
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16_dynamic',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_xla_1_gpu_fp16(self):
    """Tests Keras model with XLA, 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
456
    self._setup()
Allen Wang's avatar
Allen Wang committed
457
458
459
460
461
462
463
464
465
466
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
467
    self._setup()
Allen Wang's avatar
Allen Wang committed
468
469
470
471
472
473
474
475
476
477
478
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_tweaked',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
479
    self._setup()
Allen Wang's avatar
Allen Wang committed
480
481
482
483
484
485
486
487
488
489
490
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_dynamic',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_8_gpu(self):
    """Tests Keras model with 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
491
    self._setup()
Allen Wang's avatar
Allen Wang committed
492
493
494
495
496
497
498
499
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
500
    self._setup()
Allen Wang's avatar
Allen Wang committed
501
502
503
504
505
506
507
508
509
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_tweaked',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        dataset_num_private_threads=14)

  def benchmark_xla_8_gpu(self):
    """Tests Keras model with XLA and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
510
    self._setup()
Allen Wang's avatar
Allen Wang committed
511
512
513
514
515
516
517
518
519
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_xla_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning, 8 GPUs, and XLA."""
Hongkun Yu's avatar
Hongkun Yu committed
520
    self._setup()
Allen Wang's avatar
Allen Wang committed
521
522
523
524
525
526
527
528
529
530
531
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_tweaked',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=24)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
532
    self._setup()
Allen Wang's avatar
Allen Wang committed
533
534
535
536
537
538
539
540
541
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_8_gpu_fp16_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
542
    self._setup()
Allen Wang's avatar
Allen Wang committed
543
544
545
546
547
548
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
549
550
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
551
552
553

  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
Hongkun Yu's avatar
Hongkun Yu committed
554
    self._setup()
Allen Wang's avatar
Allen Wang committed
555
556
557
558
559
560
561
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        loss_scale='dynamic',
562
563
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
564
565
566

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
567
    self._setup()
Allen Wang's avatar
Allen Wang committed
568
569
570
571
572
573
574
575
576
577
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
578
    self._setup()
Allen Wang's avatar
Allen Wang committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=48)

  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
    """Tests with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
    """
Hongkun Yu's avatar
Hongkun Yu committed
594
    self._setup()
Allen Wang's avatar
Allen Wang committed
595
596
597
598
599
600
601
602
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
Allen Wang's avatar
Allen Wang committed
603
        dataset_num_private_threads=48)
Allen Wang's avatar
Allen Wang committed
604
605
606

  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
607
    self._setup()
Allen Wang's avatar
Allen Wang committed
608
609
610
611
612
613
614
615
616
617
618
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        loss_scale='dynamic',
        dataset_num_private_threads=48)

Zongwei Zhou's avatar
Zongwei Zhou committed
619
620
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
621
    self._setup()
Allen Wang's avatar
Allen Wang committed
622
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
623
        experiment_name='benchmark_2x2_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
624
        dtype='bfloat16',
David Chen's avatar
David Chen committed
625
        num_tpus=8,
Allen Wang's avatar
Allen Wang committed
626
627
628
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
629
630
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
631
    self._setup()
Allen Wang's avatar
Allen Wang committed
632
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
633
        experiment_name='benchmark_4x4_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
634
        dtype='bfloat16',
David Chen's avatar
David Chen committed
635
        num_tpus=32,
Allen Wang's avatar
Allen Wang committed
636
637
638
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Allen Wang's avatar
Allen Wang committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
  def benchmark_2x2_tpu_bf16_mlir(self):
    """Test Keras model with 2x2 TPU, bf16."""
    self._setup()
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(
        experiment_name='benchmark_2x2_tpu_bf16_mlir',
        dtype='bfloat16',
        num_tpus=8,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

  def benchmark_4x4_tpu_bf16_mlir(self):
    """Test Keras model with 4x4 TPU, bf16."""
    self._setup()
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(
        experiment_name='benchmark_4x4_tpu_bf16_mlir',
        dtype='bfloat16',
        num_tpus=32,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
661
662
663
664
665
666
667
668
669
670
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_8x8_tpu_bf16',
        dtype='bfloat16',
        num_tpus=128,
        distribution_strategy='tpu',
        per_replica_batch_size=64)

Allen Wang's avatar
Allen Wang committed
671
  def fill_report_object(self, stats):
Allen Wang's avatar
Allen Wang committed
672
    super(KerasClassifierBenchmarkBase, self).fill_report_object(
Allen Wang's avatar
Allen Wang committed
673
674
675
676
677
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)


Toby Boyd's avatar
Toby Boyd committed
678
679
680
class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

David Chen's avatar
David Chen committed
681
  def __init__(self, output_dir=None, default_flags=None, tpu=None):
682
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
683
684
685
686

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
David Chen's avatar
David Chen committed
687
688
        default_flags=default_flags,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
689

690
  @benchmark_wrappers.enable_runtime_flags
691
  def _run_and_report_benchmark(self, skip_steps=None):
692
    start_time_sec = time.time()
693
    stats = resnet_imagenet_main.run(FLAGS)
694
    wall_time_sec = time.time() - start_time_sec
695
    # Number of logged step time entries that are excluded in performance
696
697
698
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps
699
700
701
702
703

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
704
        log_steps=FLAGS.log_steps,
David Chen's avatar
David Chen committed
705
706
        warmup=warmup,
        start_time_sec=start_time_sec)
Toby Boyd's avatar
Toby Boyd committed
707
708

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
709
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
710
711
712
713
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
714
    FLAGS.distribution_strategy = 'off'
715
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
716
    FLAGS.batch_size = 128
717
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
718

719
720
721
722
723
724
725
726
727
728
729
730
731
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

732
733
734
735
736
737
738
739
740
741
742
743
744
745
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

746
747
748
749
750
751
752
753
754
755
756
757
758
759
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
775
  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
776
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
777
778
779
780
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
781
    FLAGS.distribution_strategy = 'one_device'
782
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
783
    FLAGS.batch_size = 128
784
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
785

786
787
788
789
790
791
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
792
    FLAGS.dtype = 'fp16'
793
    FLAGS.fp16_implementation = 'graph_rewrite'
794
    FLAGS.distribution_strategy = 'one_device'
795
796
797
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()
798

Haoyu Zhang's avatar
Haoyu Zhang committed
799
800
801
802
803
804
805
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
806
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
807
808
809
810
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

811
812
813
814
815
816
  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
817
    FLAGS.dtype = 'fp16'
818
    FLAGS.fp16_implementation = 'graph_rewrite'
819
    FLAGS.enable_xla = True
820
    FLAGS.distribution_strategy = 'one_device'
821
822
823
824
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
825
  def benchmark_1_gpu_fp16(self):
826
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
827
828
829
830
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
831
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
832
833
834
835
836
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

837
838
839
840
841
842
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
843
    FLAGS.distribution_strategy = 'one_device'
844
845
846
847
848
849
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
850
851
852
853
854
855
856
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
857
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
858
859
860
861
862
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

863
864
865
866
867
868
869
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
870
    FLAGS.distribution_strategy = 'one_device'
871
872
873
874
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
875
876
    self._run_and_report_benchmark()

877
878
879
880
881
882
883
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
884
    FLAGS.distribution_strategy = 'one_device'
885
886
887
888
889
890
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
891
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
892
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
893
894
895
896
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
897
    FLAGS.distribution_strategy = 'mirrored'
898
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
899
    FLAGS.batch_size = 128 * 8  # 8 GPUs
900
    self._run_and_report_benchmark()
901

902
903
904
905
906
907
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
908
    FLAGS.dtype = 'fp16'
909
    FLAGS.fp16_implementation = 'graph_rewrite'
910
    FLAGS.distribution_strategy = 'mirrored'
911
912
913
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
914

915
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
916
    """Test Keras model with manual config tuning and 8 GPUs."""
917
918
919
920
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
921
    FLAGS.distribution_strategy = 'mirrored'
922
923
924
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.datasets_num_private_threads = 14
925
926
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
927
928
929
930
931
932
933
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
934
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
935
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
936
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
937
938
    self._run_and_report_benchmark()

939
940
941
942
943
944
  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
945
    FLAGS.dtype = 'fp16'
946
    FLAGS.fp16_implementation = 'graph_rewrite'
947
    FLAGS.enable_xla = True
948
    FLAGS.distribution_strategy = 'mirrored'
949
950
951
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
952

953
954
955
956
957
958
959
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
960
    FLAGS.distribution_strategy = 'mirrored'
961
962
963
964
965
966
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
967
  def benchmark_8_gpu_fp16(self):
968
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
969
970
971
    self._setup()

    FLAGS.num_gpus = 8
972
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
973
    FLAGS.enable_eager = True
974
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
975
976
977
978
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

979
  def benchmark_8_gpu_fp16_tweaked(self):
980
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
981
982
983
984
985
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
986
    FLAGS.distribution_strategy = 'mirrored'
987
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
988
989
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
990
    FLAGS.dataset_num_private_threads = 40
991
992
    self._run_and_report_benchmark()

993
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
994
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
995
996
997
998
999
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
1000
    FLAGS.distribution_strategy = 'mirrored'
1001
1002
1003
1004
1005
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1006
    FLAGS.dataset_num_private_threads = 40
1007
1008
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
1009
  def benchmark_xla_8_gpu_fp16(self):
1010
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
1011
1012
1013
    self._setup()

    FLAGS.num_gpus = 8
1014
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
1015
1016
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1017
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
1018
1019
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1020
1021
    self._run_and_report_benchmark()

1022
1023
1024
1025
1026
1027
1028
1029
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1030
    FLAGS.distribution_strategy = 'mirrored'
1031
1032
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1033
1034
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
1035
1036
    self._run_and_report_benchmark()

1037
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1038
1039
1040
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1041
1042
1043
1044
1045
1046
1047
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1048
    FLAGS.distribution_strategy = 'mirrored'
1049
1050
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
1051
    FLAGS.batch_size = 256 * 8
1052
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1053
    FLAGS.datasets_num_private_threads = 48
1054
1055
1056
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1057
1058
1059
1060
1061
1062
1063
1064
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1065
    FLAGS.distribution_strategy = 'mirrored'
1066
1067
1068
1069
1070
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1071
    FLAGS.datasets_num_private_threads = 48
1072
1073
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1074
1075
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
David Chen's avatar
David Chen committed
1076
1077
1078
1079
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1080
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16')
David Chen's avatar
David Chen committed
1081
1082
1083
    FLAGS.batch_size = 1024
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1084
1085
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
David Chen's avatar
David Chen committed
1086
1087
1088
1089
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1090
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16')
David Chen's avatar
David Chen committed
1091
1092
1093
    FLAGS.batch_size = 4096
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16')
    FLAGS.batch_size = 8192
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1104
1105
1106
1107
1108
1109
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
1110

Allen Wang's avatar
Allen Wang committed
1111
class Resnet50KerasBenchmarkSynth(KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1112
1113
  """Resnet50 synthetic benchmark tests."""

David Chen's avatar
David Chen committed
1114
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1115
1116
1117
    def_flags = {}
    def_flags['log_steps'] = 10

1118
    super(Resnet50KerasBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
1119
        model='resnet', output_dir=output_dir, default_flags=def_flags, tpu=tpu,
Allen Wang's avatar
Allen Wang committed
1120
        dataset_builder='synthetic', train_epochs=1, train_steps=110)
Toby Boyd's avatar
Toby Boyd committed
1121
1122


Allen Wang's avatar
Allen Wang committed
1123
class Resnet50KerasBenchmarkReal(KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1124
1125
  """Resnet50 real data benchmark tests."""

David Chen's avatar
David Chen committed
1126
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
1127
    data_dir = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
1128
1129
1130
    def_flags = {}
    def_flags['log_steps'] = 10

1131
    super(Resnet50KerasBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
1132
        model='resnet', output_dir=output_dir, default_flags=def_flags, tpu=tpu,
Allen Wang's avatar
Allen Wang committed
1133
        dataset_builder='records', train_epochs=1, train_steps=110,
Allen Wang's avatar
Allen Wang committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        data_dir=data_dir)


class EfficientNetKerasBenchmarkReal(KerasClassifierBenchmarkBase):
  """EfficientNet real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
    data_dir = os.path.join(root_data_dir, 'imagenet')
    def_flags = {}
    def_flags['log_steps'] = 10

    super(EfficientNetKerasBenchmarkReal, self).__init__(
        model='efficientnet', output_dir=output_dir, default_flags=def_flags,
        tpu=tpu, dataset_builder='records', train_epochs=1, train_steps=110,
Allen Wang's avatar
Allen Wang committed
1148
        data_dir=data_dir)
1149
1150


1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase):
  """Resnet50 real data (stored in remote storage) benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    # Defining multiple epochs overrides the train_steps setting in benchmarks.
    def_flags['train_epochs'] = 2
    # Cache dataset so performance is stable after the first epoch.
    def_flags['training_dataset_cache'] = True
    def_flags['log_steps'] = 100
1164
1165
1166
1167
    # Note that for single GPU and pure eager tests which are less likely to be
    # input bound and more stable, these tests will run for shorter time by
    # overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark
    # methods, and skip_steps in _run_and_report_benchmark().
1168
1169
1170
1171

    super(Resnet50KerasBenchmarkRemoteData, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
  def _override_flags_to_run_test_shorter(self):
    FLAGS.train_epochs = 1
    FLAGS.train_steps = 300
    FLAGS.log_steps = 10

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

1374
  @benchmark_wrappers.enable_runtime_flags
1375
  def _run_and_report_benchmark(self):
1376
1377
1378
1379
1380
1381
1382
1383
    if FLAGS.num_gpus == 1 or FLAGS.run_eagerly:
      # For single GPU and pure eager tests which are less likely to be input
      # bound and more stable, run for shorter time and use the default
      # skip_steps.
      skip_steps = None
    else:
      # skip the first epoch for performance measurement.
      skip_steps = 600
1384
    super(Resnet50KerasBenchmarkRemoteData,
1385
          self)._run_and_report_benchmark(skip_steps=skip_steps)
1386
1387


1388
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
1389
1390
1391
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
1392
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
1393

1394
    def_flags = {}
1395
    def_flags['use_trivial_model'] = True
1396
    def_flags['skip_eval'] = True
1397
    def_flags['report_accuracy_metrics'] = False
1398
    def_flags['dtype'] = 'fp16'
1399
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1400
1401
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
1402
    def_flags['distribution_strategy'] = 'mirrored'
1403

1404
    super(TrivialKerasBenchmarkReal, self).__init__(
1405
1406
1407
1408
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

1409
  @benchmark_wrappers.enable_runtime_flags
1410
1411
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
1412
    stats = resnet_imagenet_main.run(FLAGS)
1413
1414
    wall_time_sec = time.time() - start_time_sec

1415
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1416
1417
1418
1419
1420
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1421
1422
1423
1424
1425
1426
1427
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
1428
    FLAGS.batch_size = 256 * 8
1429
1430
1431
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1432
  def fill_report_object(self, stats):
1433
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1434
1435
1436
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1437
1438


1439
1440
1441
1442
class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark):
  """Resnet50 distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1443
    flag_methods = [classifier_trainer.define_imagenet_keras_flags]
1444
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
    super(Resnet50MultiWorkerKerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.data_dir = self.data_dir
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1462
    FLAGS.datasets_num_private_threads = 32
1463
1464
1465
1466
1467
1468
1469
1470
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

1471
  @benchmark_wrappers.enable_runtime_flags
1472
1473
1474
1475
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
Allen Wang's avatar
Allen Wang committed
1476
    stats = classifier_trainer.run(flags.FLAGS)
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1525
    FLAGS.datasets_num_private_threads = 32
1526
    FLAGS.model_dir = self._get_model_dir(
1527
1528
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1559
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1560
  """Resnet50 multi-worker synthetic data benchmark tests."""
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1574
1575
1576
1577
1578
1579
1580
class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark):
  """Resnet50 multi-worker real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
1581
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1582
1583
1584
1585
1586
1587
1588
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


Jaehong Kim's avatar
Jaehong Kim committed
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
# TODO(kimjaehong): It also should be also cover other metheods of model
# optimization techniques. In that time, this class will change to something
# like 'KerasModelOptimizationAccuracyBase'.
class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for pruning method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """A accuracy benchmark class for pruning method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['pruning_method'] = 'polynomial_decay'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasPruningAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasPruningAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.00007,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'mobilenet_v1')),
        'pruning_begin_step': 0,
        'pruning_end_step': 100000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(MobilenetV1KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1])


class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for resnet50 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.0000039,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'resnet50')),
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(Resnet50KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1])


class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Pruning method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
        'train_steps': 110,
        'log_steps': 10,
        'pruning_method': 'polynomial_decay',
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    })
    super(KerasPruningBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
    }
    super(MobilenetV1KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for resnet50."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
    }
    super(Resnet50KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1759
1760
if __name__ == '__main__':
  tf.test.main()