keras_imagenet_benchmark.py 64.7 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
# Lint as: python3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
Hongkun Yu's avatar
Hongkun Yu committed
17
# pylint: disable=line-too-long
18
19
from __future__ import print_function

Allen Wang's avatar
Allen Wang committed
20
import json
21
import os
22
import time
23

Allen Wang's avatar
Allen Wang committed
24
25
from typing import Any, MutableMapping, Optional

26
from absl import flags
27
import tensorflow as tf  # pylint: disable=g-bad-import-order
28

29
from official.benchmark import benchmark_wrappers
30
from official.benchmark import keras_benchmark
31
from official.benchmark.models import resnet_imagenet_main
Allen Wang's avatar
Allen Wang committed
32
from official.vision.image_classification import classifier_trainer
33

Toby Boyd's avatar
Toby Boyd committed
34
35
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
36

Jaehong Kim's avatar
Jaehong Kim committed
37
38
39
40
41
42
43
44
MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65
MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68

# Range of top-1 accracies for model optimization techniques.
# Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY).
MODEL_OPTIMIZATION_TOP_1_ACCURACY = {
    'RESNET50_FINETUNE_PRUNING': (0.76, 0.77),
    'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68),
45
    'MOBILENET_V1_FINETUNE_CLUSTERING': (0.68, 0.70)
Jaehong Kim's avatar
Jaehong Kim committed
46
47
}

Toby Boyd's avatar
Toby Boyd committed
48
FLAGS = flags.FLAGS
49
50


Allen Wang's avatar
Allen Wang committed
51
def _get_classifier_parameters(
Allen Wang's avatar
Allen Wang committed
52
    model_variant: Optional[str] = None,
Allen Wang's avatar
Allen Wang committed
53
54
55
56
57
58
59
60
61
62
63
64
65
    num_gpus: int = 0,
    builder: str = 'records',
    skip_eval: bool = False,
    distribution_strategy: str = 'mirrored',
    per_replica_batch_size: int = 128,
    epochs: int = 90,
    steps: int = 0,
    epochs_between_evals: int = 1,
    dtype: str = 'float32',
    enable_xla: bool = False,
    run_eagerly: bool = False,
    gpu_thread_mode: Optional[str] = None,
    dataset_num_private_threads: Optional[int] = None,
66
    loss_scale: Optional[str] = None,
67
    report_metrics: bool = True,
68
    batchnorm_spatial_persistent: bool = False) -> MutableMapping[str, Any]:
Allen Wang's avatar
Allen Wang committed
69
  """Gets classifier trainer's ResNet parameters."""
Allen Wang's avatar
Allen Wang committed
70
  params = {
Allen Wang's avatar
Allen Wang committed
71
72
73
74
75
76
77
78
      'runtime': {
          'num_gpus': num_gpus,
          'distribution_strategy': distribution_strategy,
          'run_eagerly': run_eagerly,
          'enable_xla': enable_xla,
          'dataset_num_private_threads': dataset_num_private_threads,
          'gpu_thread_mode': gpu_thread_mode,
          'loss_scale': loss_scale,
79
          'batchnorm_spatial_persistent': batchnorm_spatial_persistent,
Allen Wang's avatar
Allen Wang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
      },
      'train_dataset': {
          'builder': builder,
          'use_per_replica_batch_size': True,
          'batch_size': per_replica_batch_size,
          'image_size': 224,
          'dtype': dtype,
      },
      'validation_dataset': {
          'builder': builder,
          'batch_size': per_replica_batch_size,
          'use_per_replica_batch_size': True,
          'image_size': 224,
          'dtype': dtype,
      },
      'train': {
          'epochs': epochs,
          'steps': steps,
          'callbacks': {
              'enable_tensorboard': False,
              'enable_checkpoint_and_export': False,
              'enable_time_history': True,
          },
103
          'metrics': ['accuracy'] if report_metrics else [],
Allen Wang's avatar
Allen Wang committed
104
      },
Allen Wang's avatar
Allen Wang committed
105
106
107
108
109
      'model': {
          'loss': {
              'label_smoothing': 0.1,
          },
      },
Allen Wang's avatar
Allen Wang committed
110
111
112
113
114
      'evaluation': {
          'epochs_between_evals': epochs_between_evals,
          'skip_eval': skip_eval,
      },
  }
Allen Wang's avatar
Allen Wang committed
115
116
117
118
119
  if model_variant is not None:
    params['model']['model_params'] = {
        'model_name': model_variant,
    }
  return params
Allen Wang's avatar
Allen Wang committed
120
121


Toby Boyd's avatar
Toby Boyd committed
122
123
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
124

Allen Wang's avatar
Allen Wang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
  def __init__(self,
               output_dir: Optional[str] = None,
               root_data_dir: Optional[str] = None,
               **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [classifier_trainer.define_classifier_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
142
    super(Resnet50KerasAccuracy, self).__init__(
Allen Wang's avatar
Allen Wang committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        output_dir=output_dir, flag_methods=flag_methods)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs: int = 90,
      steps: int = 0,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=epochs,
        steps=steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        run_eagerly=run_eagerly,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
181
        report_metrics=True,
182
183
        loss_scale=loss_scale,
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
184
185
186
187
188
189
190
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

191
    super(Resnet50KerasAccuracy, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
192
193
194
195
196
197
198
199
200
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=total_batch_size,
        log_steps=100)

  def benchmark_8_gpu(self):
    """Tests Keras model with eager, dist_strat and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
201
202
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
203
204
205
206
207
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        per_replica_batch_size=128,
        epochs=90,
        epochs_between_evals=10,
208
        dtype='float32')
Allen Wang's avatar
Allen Wang committed
209
210
211

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with eager, dist_strat, 8 GPUs, and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
212
213
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
214
215
216
217
218
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
219
        dtype='float16')
Allen Wang's avatar
Allen Wang committed
220
221
222

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
223
224
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
225
226
227
228
229
230
        experiment_name='benchmark_xla_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
231
        enable_xla=True)
Allen Wang's avatar
Allen Wang committed
232
233
234

  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
235
236
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
237
238
239
240
241
242
243
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic',
        top_1_min=0.736,
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
244
        loss_scale='dynamic')
Allen Wang's avatar
Allen Wang committed
245
246
247
248
249

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Jaehong Kim's avatar
Jaehong Kim committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for MobilenetV1 in Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
    super(MobilenetV1KerasAccuracy, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags={
            'model': 'mobilenet',
            'optimizer': 'mobilenet_default',
            'initial_learning_rate_per_sample': 0.00039,
        })

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY,
                                top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(MobilenetV1KerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Allen Wang's avatar
Allen Wang committed
309
310
class KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Classifier Trainer benchmarks."""
Allen Wang's avatar
Allen Wang committed
311

Allen Wang's avatar
Allen Wang committed
312
  def __init__(self, model, output_dir=None, default_flags=None,
Allen Wang's avatar
Allen Wang committed
313
314
315
316
               tpu=None, dataset_builder='records', train_epochs=1,
               train_steps=110, data_dir=None):
    flag_methods = [classifier_trainer.define_classifier_flags]

Allen Wang's avatar
Allen Wang committed
317
    self.model = model
Allen Wang's avatar
Allen Wang committed
318
319
320
321
322
    self.dataset_builder = dataset_builder
    self.train_epochs = train_epochs
    self.train_steps = train_steps
    self.data_dir = data_dir

Allen Wang's avatar
Allen Wang committed
323
    super(KerasClassifierBenchmarkBase, self).__init__(
Allen Wang's avatar
Allen Wang committed
324
325
326
327
328
329
330
331
332
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        tpu=tpu)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
Allen Wang's avatar
Allen Wang committed
333
      model_variant: Optional[str] = None,
Allen Wang's avatar
Allen Wang committed
334
335
336
337
      skip_steps: Optional[int] = None,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
David Chen's avatar
David Chen committed
338
      num_tpus: int = 0,
Allen Wang's avatar
Allen Wang committed
339
340
341
342
343
344
345
346
347
348
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
Allen Wang's avatar
Allen Wang committed
349
    FLAGS.model_type = self.model
Allen Wang's avatar
Allen Wang committed
350
351
352
353
354
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
Allen Wang's avatar
Allen Wang committed
355
        model_variant=model_variant,
Allen Wang's avatar
Allen Wang committed
356
357
358
359
360
361
362
363
364
365
366
367
        builder=self.dataset_builder,
        skip_eval=True,
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=self.train_epochs,
        steps=self.train_steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
368
        loss_scale=loss_scale,
369
        report_metrics=False,
370
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
371
    FLAGS.params_override = json.dumps(parameters)
David Chen's avatar
David Chen committed
372
373
374
375
    if distribution_strategy == 'tpu':
      total_batch_size = num_tpus * per_replica_batch_size
    else:
      total_batch_size = num_gpus * per_replica_batch_size
Allen Wang's avatar
Allen Wang committed
376
377
378
379
380
381
382
383
384

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps

Allen Wang's avatar
Allen Wang committed
385
    super(KerasClassifierBenchmarkBase, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
386
387
388
389
390
391
392
393
394
        stats,
        wall_time_sec,
        total_batch_size=total_batch_size,
        log_steps=FLAGS.log_steps,
        warmup=warmup,
        start_time_sec=start_time_sec)

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests Keras model with 1 GPU, no distribution strategy."""
Hongkun Yu's avatar
Hongkun Yu committed
395
    self._setup()
Allen Wang's avatar
Allen Wang committed
396
397
398
399
400
401
402
403
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat',
        num_gpus=1,
        distribution_strategy='off',
        per_replica_batch_size=128)

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Tests Keras model with 1 GPU, no distribution strategy, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
404
    self._setup()
Allen Wang's avatar
Allen Wang committed
405
406
407
408
409
410
411
412
413
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        per_replica_batch_size=64)

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Tests with 1 GPU, no distribution strategy, fp16, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
414
    self._setup()
Allen Wang's avatar
Allen Wang committed
415
416
417
418
419
420
421
422
423
424
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        dtype='float16',
        per_replica_batch_size=128)

  def benchmark_1_gpu(self):
    """Tests Keras model with 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
425
    self._setup()
Allen Wang's avatar
Allen Wang committed
426
427
428
429
430
431
432
433
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_xla_1_gpu(self):
    """Tests Keras model with XLA and 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
434
    self._setup()
Allen Wang's avatar
Allen Wang committed
435
436
437
438
439
440
441
442
443
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_1_gpu_fp16(self):
    """Tests Keras model with 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
444
    self._setup()
Allen Wang's avatar
Allen Wang committed
445
446
447
448
449
450
451
452
453
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_1_gpu_fp16_dynamic(self):
    """Tests Keras model with 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
454
    self._setup()
Allen Wang's avatar
Allen Wang committed
455
456
457
458
459
460
461
462
463
464
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16_dynamic',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_xla_1_gpu_fp16(self):
    """Tests Keras model with XLA, 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
465
    self._setup()
Allen Wang's avatar
Allen Wang committed
466
467
468
469
470
471
472
473
474
475
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
476
    self._setup()
Allen Wang's avatar
Allen Wang committed
477
478
479
480
481
482
483
484
485
486
487
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_tweaked',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
488
    self._setup()
Allen Wang's avatar
Allen Wang committed
489
490
491
492
493
494
495
496
497
498
499
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_dynamic',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_8_gpu(self):
    """Tests Keras model with 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
500
    self._setup()
Allen Wang's avatar
Allen Wang committed
501
502
503
504
505
506
507
508
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
509
    self._setup()
Allen Wang's avatar
Allen Wang committed
510
511
512
513
514
515
516
517
518
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_tweaked',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        dataset_num_private_threads=14)

  def benchmark_xla_8_gpu(self):
    """Tests Keras model with XLA and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
519
    self._setup()
Allen Wang's avatar
Allen Wang committed
520
521
522
523
524
525
526
527
528
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_xla_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning, 8 GPUs, and XLA."""
Hongkun Yu's avatar
Hongkun Yu committed
529
    self._setup()
Allen Wang's avatar
Allen Wang committed
530
531
532
533
534
535
536
537
538
539
540
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_tweaked',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=24)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
541
    self._setup()
Allen Wang's avatar
Allen Wang committed
542
543
544
545
546
547
548
549
550
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_8_gpu_fp16_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
551
    self._setup()
Allen Wang's avatar
Allen Wang committed
552
553
554
555
556
557
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
558
559
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
560
561
562

  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
Hongkun Yu's avatar
Hongkun Yu committed
563
    self._setup()
Allen Wang's avatar
Allen Wang committed
564
565
566
567
568
569
570
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        loss_scale='dynamic',
571
572
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
573
574
575

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
576
    self._setup()
Allen Wang's avatar
Allen Wang committed
577
578
579
580
581
582
583
584
585
586
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
587
    self._setup()
Allen Wang's avatar
Allen Wang committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=48)

  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
    """Tests with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
    """
Hongkun Yu's avatar
Hongkun Yu committed
603
    self._setup()
Allen Wang's avatar
Allen Wang committed
604
605
606
607
608
609
610
611
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
Allen Wang's avatar
Allen Wang committed
612
        dataset_num_private_threads=48)
Allen Wang's avatar
Allen Wang committed
613
614
615

  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
616
    self._setup()
Allen Wang's avatar
Allen Wang committed
617
618
619
620
621
622
623
624
625
626
627
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        loss_scale='dynamic',
        dataset_num_private_threads=48)

Zongwei Zhou's avatar
Zongwei Zhou committed
628
629
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
630
    self._setup()
Allen Wang's avatar
Allen Wang committed
631
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
632
        experiment_name='benchmark_2x2_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
633
        dtype='bfloat16',
David Chen's avatar
David Chen committed
634
        num_tpus=8,
Allen Wang's avatar
Allen Wang committed
635
636
637
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
638
639
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
640
    self._setup()
Allen Wang's avatar
Allen Wang committed
641
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
642
        experiment_name='benchmark_4x4_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
643
        dtype='bfloat16',
David Chen's avatar
David Chen committed
644
        num_tpus=32,
Allen Wang's avatar
Allen Wang committed
645
646
647
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Allen Wang's avatar
Allen Wang committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
  def benchmark_2x2_tpu_bf16_mlir(self):
    """Test Keras model with 2x2 TPU, bf16."""
    self._setup()
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(
        experiment_name='benchmark_2x2_tpu_bf16_mlir',
        dtype='bfloat16',
        num_tpus=8,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

  def benchmark_4x4_tpu_bf16_mlir(self):
    """Test Keras model with 4x4 TPU, bf16."""
    self._setup()
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(
        experiment_name='benchmark_4x4_tpu_bf16_mlir',
        dtype='bfloat16',
        num_tpus=32,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
670
671
672
673
674
675
676
677
678
679
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_8x8_tpu_bf16',
        dtype='bfloat16',
        num_tpus=128,
        distribution_strategy='tpu',
        per_replica_batch_size=64)

Allen Wang's avatar
Allen Wang committed
680
  def fill_report_object(self, stats):
Allen Wang's avatar
Allen Wang committed
681
    super(KerasClassifierBenchmarkBase, self).fill_report_object(
Allen Wang's avatar
Allen Wang committed
682
683
684
685
686
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)


Toby Boyd's avatar
Toby Boyd committed
687
688
689
class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

David Chen's avatar
David Chen committed
690
  def __init__(self, output_dir=None, default_flags=None, tpu=None):
691
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
692
693
694
695

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
David Chen's avatar
David Chen committed
696
697
        default_flags=default_flags,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
698

699
  @benchmark_wrappers.enable_runtime_flags
700
  def _run_and_report_benchmark(self, skip_steps=None):
701
    start_time_sec = time.time()
702
    stats = resnet_imagenet_main.run(FLAGS)
703
    wall_time_sec = time.time() - start_time_sec
704
    # Number of logged step time entries that are excluded in performance
705
706
707
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps
708
709
710
711
712

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
713
        log_steps=FLAGS.log_steps,
David Chen's avatar
David Chen committed
714
715
        warmup=warmup,
        start_time_sec=start_time_sec)
Toby Boyd's avatar
Toby Boyd committed
716
717

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
718
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
719
720
721
722
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
723
    FLAGS.distribution_strategy = 'off'
724
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
725
    FLAGS.batch_size = 128
726
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
727

728
729
730
731
732
733
734
735
736
737
738
739
740
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

741
742
743
744
745
746
747
748
749
750
751
752
753
754
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

755
756
757
758
759
760
761
762
763
764
765
766
767
768
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
784
  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
785
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
786
787
788
789
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
790
    FLAGS.distribution_strategy = 'one_device'
791
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
792
    FLAGS.batch_size = 128
793
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
794

795
796
797
798
799
800
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
801
    FLAGS.dtype = 'fp16'
802
    FLAGS.fp16_implementation = 'graph_rewrite'
803
    FLAGS.distribution_strategy = 'one_device'
804
805
806
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()
807

Haoyu Zhang's avatar
Haoyu Zhang committed
808
809
810
811
812
813
814
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
815
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
816
817
818
819
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

820
821
822
823
824
825
  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
826
    FLAGS.dtype = 'fp16'
827
    FLAGS.fp16_implementation = 'graph_rewrite'
828
    FLAGS.enable_xla = True
829
    FLAGS.distribution_strategy = 'one_device'
830
831
832
833
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
834
  def benchmark_1_gpu_fp16(self):
835
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
836
837
838
839
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
840
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
841
842
843
844
845
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

846
847
848
849
850
851
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
852
    FLAGS.distribution_strategy = 'one_device'
853
854
855
856
857
858
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
859
860
861
862
863
864
865
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
866
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
867
868
869
870
871
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

872
873
874
875
876
877
878
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
879
    FLAGS.distribution_strategy = 'one_device'
880
881
882
883
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
884
885
    self._run_and_report_benchmark()

886
887
888
889
890
891
892
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
893
    FLAGS.distribution_strategy = 'one_device'
894
895
896
897
898
899
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
900
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
901
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
902
903
904
905
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
906
    FLAGS.distribution_strategy = 'mirrored'
907
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Ruomei Yan's avatar
Ruomei Yan committed
908
    FLAGS.batch_size = 128 * 8  # 8 GPUs
909
    self._run_and_report_benchmark()
910

911
912
913
914
915
916
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
917
    FLAGS.dtype = 'fp16'
918
    FLAGS.fp16_implementation = 'graph_rewrite'
919
    FLAGS.distribution_strategy = 'mirrored'
920
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
Ruomei Yan's avatar
Ruomei Yan committed
921
    FLAGS.batch_size = 256 * 8  # 8 GPUs
922
    self._run_and_report_benchmark()
923

924
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
925
    """Test Keras model with manual config tuning and 8 GPUs."""
926
927
928
929
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
930
    FLAGS.distribution_strategy = 'mirrored'
931
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
932
    FLAGS.batch_size = 128 * 8  # 8 GPUs
933
    FLAGS.datasets_num_private_threads = 14
934
935
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
936
937
938
939
940
941
942
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
943
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
944
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
Ruomei Yan's avatar
Ruomei Yan committed
945
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
946
947
    self._run_and_report_benchmark()

948
949
950
951
952
953
  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
954
    FLAGS.dtype = 'fp16'
955
    FLAGS.fp16_implementation = 'graph_rewrite'
956
    FLAGS.enable_xla = True
957
    FLAGS.distribution_strategy = 'mirrored'
958
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
Ruomei Yan's avatar
Ruomei Yan committed
959
    FLAGS.batch_size = 256 * 8  # 8 GPUs
960
    self._run_and_report_benchmark()
961

962
963
964
965
966
967
968
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
969
    FLAGS.distribution_strategy = 'mirrored'
970
971
972
973
974
975
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
976
  def benchmark_8_gpu_fp16(self):
977
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
978
979
980
    self._setup()

    FLAGS.num_gpus = 8
981
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
982
    FLAGS.enable_eager = True
983
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
984
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
Ruomei Yan's avatar
Ruomei Yan committed
985
    FLAGS.batch_size = 256 * 8  # 8 GPUs
Reed's avatar
Reed committed
986
987
    self._run_and_report_benchmark()

988
  def benchmark_8_gpu_fp16_tweaked(self):
989
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
990
991
992
993
994
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
995
    FLAGS.distribution_strategy = 'mirrored'
996
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
997
    FLAGS.batch_size = 256 * 8  # 8 GPUs
998
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
999
    FLAGS.datasets_num_private_threads = 40
1000
1001
    self._run_and_report_benchmark()

1002
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
1003
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
1004
1005
1006
1007
1008
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
1009
    FLAGS.distribution_strategy = 'mirrored'
1010
1011
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
1012
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1013
1014
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1015
    FLAGS.datasets_num_private_threads = 40
1016
1017
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
1018
  def benchmark_xla_8_gpu_fp16(self):
1019
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
1020
1021
1022
    self._setup()

    FLAGS.num_gpus = 8
1023
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
1024
1025
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1026
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
1027
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
Ruomei Yan's avatar
Ruomei Yan committed
1028
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1029
1030
    self._run_and_report_benchmark()

1031
1032
1033
1034
1035
1036
1037
1038
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1039
    FLAGS.distribution_strategy = 'mirrored'
1040
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
1041
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1042
1043
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
1044
1045
    self._run_and_report_benchmark()

1046
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1047
1048
1049
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1050
1051
1052
1053
1054
1055
1056
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1057
    FLAGS.distribution_strategy = 'mirrored'
1058
1059
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
1060
    FLAGS.batch_size = 256 * 8
1061
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1062
    FLAGS.datasets_num_private_threads = 48
1063
1064
1065
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1066
1067
1068
1069
1070
1071
1072
1073
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1074
    FLAGS.distribution_strategy = 'mirrored'
1075
1076
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
Ruomei Yan's avatar
Ruomei Yan committed
1077
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1078
1079
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1080
    FLAGS.datasets_num_private_threads = 48
1081
1082
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1083
1084
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
David Chen's avatar
David Chen committed
1085
1086
1087
1088
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1089
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16')
David Chen's avatar
David Chen committed
1090
1091
1092
    FLAGS.batch_size = 1024
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1093
1094
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
David Chen's avatar
David Chen committed
1095
1096
1097
1098
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1099
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16')
David Chen's avatar
David Chen committed
1100
1101
1102
    FLAGS.batch_size = 4096
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16')
    FLAGS.batch_size = 8192
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1113
1114
1115
1116
1117
1118
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
1119

Allen Wang's avatar
Allen Wang committed
1120
class Resnet50KerasBenchmarkSynth(KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1121
1122
  """Resnet50 synthetic benchmark tests."""

David Chen's avatar
David Chen committed
1123
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1124
1125
1126
    def_flags = {}
    def_flags['log_steps'] = 10

1127
    super(Resnet50KerasBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
1128
        model='resnet', output_dir=output_dir, default_flags=def_flags, tpu=tpu,
Allen Wang's avatar
Allen Wang committed
1129
        dataset_builder='synthetic', train_epochs=1, train_steps=110)
Toby Boyd's avatar
Toby Boyd committed
1130
1131


Allen Wang's avatar
Allen Wang committed
1132
class Resnet50KerasBenchmarkReal(KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1133
1134
  """Resnet50 real data benchmark tests."""

David Chen's avatar
David Chen committed
1135
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
1136
    data_dir = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
1137
1138
1139
    def_flags = {}
    def_flags['log_steps'] = 10

1140
    super(Resnet50KerasBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
1141
        model='resnet', output_dir=output_dir, default_flags=def_flags, tpu=tpu,
Allen Wang's avatar
Allen Wang committed
1142
        dataset_builder='records', train_epochs=1, train_steps=110,
Allen Wang's avatar
Allen Wang committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
        data_dir=data_dir)


class EfficientNetKerasBenchmarkReal(KerasClassifierBenchmarkBase):
  """EfficientNet real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
    data_dir = os.path.join(root_data_dir, 'imagenet')
    def_flags = {}
    def_flags['log_steps'] = 10

    super(EfficientNetKerasBenchmarkReal, self).__init__(
        model='efficientnet', output_dir=output_dir, default_flags=def_flags,
        tpu=tpu, dataset_builder='records', train_epochs=1, train_steps=110,
Allen Wang's avatar
Allen Wang committed
1157
        data_dir=data_dir)
1158

Allen Wang's avatar
Allen Wang committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
  def benchmark_2x2_tpu_b7_bf16(self):
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_b7_2x2_tpu_bf16',
        model_variant='efficientnet-b7',
        dtype='bfloat16',
        num_tpus=8,
        distribution_strategy='tpu',
        per_replica_batch_size=128)

1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase):
  """Resnet50 real data (stored in remote storage) benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    # Defining multiple epochs overrides the train_steps setting in benchmarks.
    def_flags['train_epochs'] = 2
    # Cache dataset so performance is stable after the first epoch.
    def_flags['training_dataset_cache'] = True
    def_flags['log_steps'] = 100
1183
1184
1185
1186
    # Note that for single GPU and pure eager tests which are less likely to be
    # input bound and more stable, these tests will run for shorter time by
    # overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark
    # methods, and skip_steps in _run_and_report_benchmark().
1187
1188
1189
1190

    super(Resnet50KerasBenchmarkRemoteData, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
  def _override_flags_to_run_test_shorter(self):
    FLAGS.train_epochs = 1
    FLAGS.train_steps = 300
    FLAGS.log_steps = 10

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

1393
  @benchmark_wrappers.enable_runtime_flags
1394
  def _run_and_report_benchmark(self):
1395
1396
1397
1398
1399
1400
1401
1402
    if FLAGS.num_gpus == 1 or FLAGS.run_eagerly:
      # For single GPU and pure eager tests which are less likely to be input
      # bound and more stable, run for shorter time and use the default
      # skip_steps.
      skip_steps = None
    else:
      # skip the first epoch for performance measurement.
      skip_steps = 600
1403
    super(Resnet50KerasBenchmarkRemoteData,
1404
          self)._run_and_report_benchmark(skip_steps=skip_steps)
1405
1406


1407
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
1408
1409
1410
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
1411
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
1412

1413
    def_flags = {}
1414
    def_flags['use_trivial_model'] = True
1415
    def_flags['skip_eval'] = True
1416
    def_flags['report_accuracy_metrics'] = False
1417
    def_flags['dtype'] = 'fp16'
1418
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1419
1420
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
1421
    def_flags['distribution_strategy'] = 'mirrored'
1422

1423
    super(TrivialKerasBenchmarkReal, self).__init__(
1424
1425
1426
1427
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

1428
  @benchmark_wrappers.enable_runtime_flags
1429
1430
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
1431
    stats = resnet_imagenet_main.run(FLAGS)
1432
1433
    wall_time_sec = time.time() - start_time_sec

1434
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1435
1436
1437
1438
1439
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1440
1441
1442
1443
1444
1445
1446
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
1447
    FLAGS.batch_size = 256 * 8
1448
1449
1450
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1451
  def fill_report_object(self, stats):
1452
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1453
1454
1455
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1456
1457


1458
1459
1460
1461
class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark):
  """Resnet50 distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1462
    flag_methods = [classifier_trainer.define_imagenet_keras_flags]
1463
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
    super(Resnet50MultiWorkerKerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.data_dir = self.data_dir
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1481
    FLAGS.datasets_num_private_threads = 32
1482
1483
1484
1485
1486
1487
1488
1489
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

1490
  @benchmark_wrappers.enable_runtime_flags
1491
1492
1493
1494
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
Allen Wang's avatar
Allen Wang committed
1495
    stats = classifier_trainer.run(flags.FLAGS)
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1544
    FLAGS.datasets_num_private_threads = 32
1545
    FLAGS.model_dir = self._get_model_dir(
1546
1547
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1578
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1579
  """Resnet50 multi-worker synthetic data benchmark tests."""
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1593
1594
1595
1596
1597
1598
1599
class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark):
  """Resnet50 multi-worker real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
1600
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1601
1602
1603
1604
1605
1606
1607
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


Jaehong Kim's avatar
Jaehong Kim committed
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
# TODO(kimjaehong): It also should be also cover other metheods of model
# optimization techniques. In that time, this class will change to something
# like 'KerasModelOptimizationAccuracyBase'.
class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for pruning method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """A accuracy benchmark class for pruning method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['pruning_method'] = 'polynomial_decay'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasPruningAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasPruningAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.00007,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'mobilenet_v1')),
        'pruning_begin_step': 0,
        'pruning_end_step': 100000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(MobilenetV1KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1])


class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for resnet50 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.0000039,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'resnet50')),
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(Resnet50KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1])


class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Pruning method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
        'train_steps': 110,
        'log_steps': 10,
        'pruning_method': 'polynomial_decay',
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    })
    super(KerasPruningBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
    }
    super(MobilenetV1KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for resnet50."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
    }
    super(Resnet50KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
class KerasClusteringAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for clustering method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """An accuracy benchmark class for clustering method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['clustering_method'] = 'selective_clustering'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    default_flags['model'] = 'mobilenet_pretrained'
    default_flags['optimizer'] = 'mobilenet_fine_tune'

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasClusteringAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'MOBILENET_V1_FINETUNE_CLUSTERING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'MOBILENET_V1_FINETUNE_CLUSTERING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasClusteringAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasClusteringAccuracy(KerasClusteringAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with clustering method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet_pretrained',
        'optimizer': 'mobilenet_fine_tune',
    }
    super(MobilenetV1KerasClusteringAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasClusteringAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_CLUSTERING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_CLUSTERING'][1])


class KerasClusteringBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Clustering method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
1873
        'clustering_method': 'selective_clustering',
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
        'train_steps': 110,
        'log_steps': 10,
    })
    super(KerasClusteringBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasClusteringBenchmarkReal(KerasClusteringBenchmarkRealBase):
  """Clustering method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet_pretrained',
        'optimizer': 'mobilenet_fine_tune',
    }
    super(MobilenetV1KerasClusteringBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1893
1894
if __name__ == '__main__':
  tf.test.main()