ncf_keras_main.py 15.6 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import json
Shining Sun's avatar
Shining Sun committed
26
27
28
import os

# pylint: disable=g-bad-import-order
29
from absl import app as absl_app
Shining Sun's avatar
Shining Sun committed
30
from absl import flags
31
from absl import logging
Shining Sun's avatar
Shining Sun committed
32
33
34
35
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
36
from official.recommendation import constants as rconst
Shining Sun's avatar
Shining Sun committed
37
from official.recommendation import ncf_common
38
from official.recommendation import ncf_input_pipeline
Shining Sun's avatar
Shining Sun committed
39
40
41
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
42
from official.utils.misc import distribution_utils
43
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
44
45
46
47
48
49
from official.utils.misc import model_helpers


FLAGS = flags.FLAGS


guptapriya's avatar
guptapriya committed
50
51
52
53
54
55
def metric_fn(logits, dup_mask, params):
  dup_mask = tf.cast(dup_mask, tf.float32)
  logits = tf.slice(logits, [0, 0, 1], [-1, -1, -1])
  in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
      logits,
      dup_mask,
guptapriya's avatar
cleanup  
guptapriya committed
56
      params["match_mlperf"])
guptapriya's avatar
guptapriya committed
57
58
59
60
  metric_weights = tf.cast(metric_weights, tf.float32)
  return in_top_k, metric_weights


61
62
63
64
65
66
67
class MetricLayer(tf.keras.layers.Layer):
  """Custom layer of metrics for NCF model."""

  def __init__(self, params):
    super(MetricLayer, self).__init__()
    self.params = params
    self.metric = tf.keras.metrics.Mean(name=rconst.HR_METRIC_NAME)
guptapriya's avatar
guptapriya committed
68

69
70
  def call(self, inputs):
    logits, dup_mask = inputs
guptapriya's avatar
guptapriya committed
71
    in_top_k, metric_weights = metric_fn(logits, dup_mask, self.params)
guptapriya's avatar
guptapriya committed
72
    self.add_metric(self.metric(in_top_k, sample_weight=metric_weights))
guptapriya's avatar
guptapriya committed
73
    return logits
74
75


Shining Sun's avatar
Shining Sun committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


91
92
93
94
95
96
97
98
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
99
    self.stopped_epoch = 0
100
101
102
103
104
105
106
107
108

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
Haoyu Zhang's avatar
Haoyu Zhang committed
109
      print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
110
111
112
113
114

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
Haoyu Zhang's avatar
Haoyu Zhang committed
115
116
117
      logging.warning("Early stopping conditioned on metric `%s` "
                      "which is not available. Available metrics are: %s",
                      self.monitor, ",".join(list(logs.keys())))
118
119
120
    return monitor_value


Shining Sun's avatar
Shining Sun committed
121
122
def _get_keras_model(params):
  """Constructs and returns the model."""
Haoyu Zhang's avatar
Haoyu Zhang committed
123
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
124

125
126
127
128
  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
Shining Sun's avatar
Shining Sun committed
129
  user_input = tf.keras.layers.Input(
130
      shape=(batch_size,),
131
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
132
      name=movielens.USER_COLUMN,
133
      dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
134
135

  item_input = tf.keras.layers.Input(
136
      shape=(batch_size,),
137
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
138
      name=movielens.ITEM_COLUMN,
139
      dtype=tf.int32)
guptapriya's avatar
guptapriya committed
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
  valid_pt_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.VALID_POINT_MASK,
      dtype=tf.bool)

  dup_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.DUPLICATE_MASK,
      dtype=tf.int32)

  label_input = tf.keras.layers.Input(
      shape=(batch_size, 1),
      batch_size=params["batches_per_step"],
      name=rconst.TRAIN_LABEL_KEY,
      dtype=tf.bool)
158
159
160

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)
Shining Sun's avatar
Shining Sun committed
161
162
163

  base_model_output = base_model.output

164
165
166
167
  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

Shining Sun's avatar
Shining Sun committed
168
  zeros = tf.keras.layers.Lambda(
169
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
170
171

  softmax_logits = tf.keras.layers.concatenate(
172
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
173
174
      axis=-1)

175
176
177
  """CTL does metric calculation as part of eval_step function"""
  if not params["keras_use_ctl"]:
    softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])
178

Shining Sun's avatar
Shining Sun committed
179
  keras_model = tf.keras.Model(
guptapriya's avatar
guptapriya committed
180
181
182
183
184
185
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
Shining Sun's avatar
Shining Sun committed
186
187
      outputs=softmax_logits)

188
189
190
191
192
193
194
  loss_obj = tf.keras.losses.SparseCategoricalCrossentropy(
      from_logits=True,
      reduction="sum")

  keras_model.add_loss(loss_obj(
      y_true=label_input,
      y_pred=softmax_logits,
guptapriya's avatar
guptapriya committed
195
      sample_weight=valid_pt_mask_input) * 1.0 / batch_size)
196

Shining Sun's avatar
Shining Sun committed
197
198
199
200
201
  keras_model.summary()
  return keras_model


def run_ncf(_):
202
203
  """Run NCF training and eval with Keras."""

204
205
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

guptapriya's avatar
guptapriya committed
206
207
208
  if FLAGS.seed is not None:
    print("Setting tf seed")
    tf.random.set_seed(FLAGS.seed)
209

Shining Sun's avatar
Shining Sun committed
210
211
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
212
    logging.warning(
Shining Sun's avatar
Shining Sun committed
213
214
215
216
217
218
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

Shining Sun's avatar
Shining Sun committed
219
  params = ncf_common.parse_flags(FLAGS)
220
  model_helpers.apply_clean(flags.FLAGS)
Shining Sun's avatar
Shining Sun committed
221

222
223
224
225
226
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus)
  params["distribute_strategy"] = strategy

227
  if not keras_utils.is_v2_0() and strategy is not None:
228
229
    logging.error("NCF Keras only works with distribution strategy in TF 2.0")
    return
guptapriya's avatar
guptapriya committed
230

guptapriya's avatar
guptapriya committed
231
  if (params["keras_use_ctl"] and (
232
      not keras_utils.is_v2_0() or strategy is None)):
233
    logging.error(
guptapriya's avatar
guptapriya committed
234
        "Custom training loop only works with tensorflow 2.0 and dist strat.")
235
236
    return

Shining Sun's avatar
Shining Sun committed
237
  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
238
239
  # eval). This carries over that rounding to batch_size as well. This is the
  # per device batch size
Haoyu Zhang's avatar
Haoyu Zhang committed
240
  params["batch_size"] = params["eval_batch_size"]
241
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  callbacks = [time_callback]

  producer, input_meta_data = None, None
  generate_input_online = params["train_dataset_path"] is None

  if generate_input_online:
    # Start data producing thread.
    num_users, num_items, num_train_steps, num_eval_steps, producer = (
        ncf_common.get_inputs(params))
    producer.start()
    per_epoch_callback = IncrementEpochCallback(producer)
    callbacks.append(per_epoch_callback)
  else:
    assert params["eval_dataset_path"] and params["input_meta_data_path"]
258
    with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
259
260
261
      input_meta_data = json.loads(reader.read().decode("utf-8"))
      num_users = input_meta_data["num_users"]
      num_items = input_meta_data["num_items"]
Shining Sun's avatar
Shining Sun committed
262
263

  params["num_users"], params["num_items"] = num_users, num_items
264
265
266
267
  (train_input_dataset, eval_input_dataset, num_train_steps, num_eval_steps) = \
      (ncf_input_pipeline.create_ncf_input_data(
          params, producer, input_meta_data))
  steps_per_epoch = None if generate_input_online else num_train_steps
268
269
270

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
guptapriya's avatar
guptapriya committed
271
        "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
272
    callbacks.append(early_stopping_callback)
273
274
  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
275
276
277
278
279
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
280

Haoyu Zhang's avatar
Haoyu Zhang committed
281
  if params["keras_use_ctl"]:
282
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
283
        reduction="sum",
284
285
286
287
288
289
        from_logits=True)
    train_input_iterator = strategy.make_dataset_iterator(train_input_dataset)
    eval_input_iterator = strategy.make_dataset_iterator(eval_input_dataset)

    def train_step():
      """Called once per step to train the model."""
guptapriya's avatar
guptapriya committed
290
      def step_fn(features):
291
292
        """Computes loss and applied gradient per replica."""
        with tf.GradientTape() as tape:
guptapriya's avatar
guptapriya committed
293
          softmax_logits = keras_model(features)
guptapriya's avatar
guptapriya committed
294
          labels = features[rconst.TRAIN_LABEL_KEY]
295
296
297
298
299
          loss = loss_object(labels, softmax_logits,
                             sample_weight=features[rconst.VALID_POINT_MASK])
          loss *= (1.0 / (batch_size*strategy.num_replicas_in_sync))

        grads = tape.gradient(loss, keras_model.trainable_variables)
300
        # Converting gradients to dense form helps in perf on GPU for NCF
301
302
        grads = neumf_model.sparse_to_dense_grads(
            list(zip(grads, keras_model.trainable_variables)))
303
        optimizer.apply_gradients(grads)
304
305
306
307
308
309
310
311
312
313
        return loss

      per_replica_losses = strategy.experimental_run(step_fn,
                                                     train_input_iterator)
      mean_loss = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
      return mean_loss

    def eval_step():
      """Called once per eval step to compute eval metrics."""
guptapriya's avatar
guptapriya committed
314
      def step_fn(features):
315
        """Computes eval metrics per replica."""
guptapriya's avatar
guptapriya committed
316
        softmax_logits = keras_model(features)
guptapriya's avatar
guptapriya committed
317
        in_top_k, metric_weights = metric_fn(
guptapriya's avatar
guptapriya committed
318
            softmax_logits, features[rconst.DUPLICATE_MASK], params)
319
320
321
322
323
324
325
326
327
328
329
330
        hr_sum = tf.reduce_sum(in_top_k*metric_weights)
        hr_count = tf.reduce_sum(metric_weights)
        return hr_sum, hr_count

      per_replica_hr_sum, per_replica_hr_count = (
          strategy.experimental_run(step_fn, eval_input_iterator))
      hr_sum = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
      hr_count = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
      return hr_sum, hr_count

331
332
333
334
    if not FLAGS.run_eagerly:
      train_step = tf.function(train_step)
      eval_step = tf.function(eval_step)

335
336
    time_callback.on_train_begin()
    for epoch in range(FLAGS.train_epochs):
337
338
339
340
341
342
343
344
345
346
347
      for cb in callbacks:
        cb.on_epoch_begin(epoch)

      # As NCF dataset is sampled with randomness, not repeating
      # data elements in each epoch has significant impact on
      # convergence. As so, offline-generated TF record files
      # contains all epoch worth of data. Thus we do not need
      # to initialize dataset when reading from tf record files.
      if generate_input_online:
        train_input_iterator.initialize()

348
349
350
351
352
      train_loss = 0
      for step in range(num_train_steps):
        time_callback.on_batch_begin(step+epoch*num_train_steps)
        train_loss += train_step()
        time_callback.on_batch_end(step+epoch*num_train_steps)
353
      train_loss /= num_train_steps
Haoyu Zhang's avatar
Haoyu Zhang committed
354
      logging.info("Done training epoch %s, epoch loss=%s.",
355
                   epoch+1, train_loss)
356
357
358
359
360
361
362
      eval_input_iterator.initialize()
      hr_sum = 0
      hr_count = 0
      for _ in range(num_eval_steps):
        step_hr_sum, step_hr_count = eval_step()
        hr_sum += step_hr_sum
        hr_count += step_hr_count
Haoyu Zhang's avatar
Haoyu Zhang committed
363
      logging.info("Done eval epoch %s, hr=%s.", epoch+1, hr_sum/hr_count)
364
365
366
367
368
369
370
371
372
373

      if (FLAGS.early_stopping and
          float(hr_sum/hr_count) > params["hr_threshold"]):
        break

    time_callback.on_train_end()
    eval_results = [None, hr_sum/hr_count]

  else:
    with distribution_utils.get_strategy_scope(strategy):
374
375
376
377
378
379
380
381
382
383
384
      # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
      # a valid arg for this model. Also remove as a valid flag.
      if FLAGS.force_v2_in_keras_compile is not None:
        keras_model.compile(
            optimizer=optimizer,
            run_eagerly=FLAGS.run_eagerly,
            experimental_run_tf_function=FLAGS.force_v2_in_keras_compile)
      else:
        keras_model.compile(
            optimizer=optimizer,
            run_eagerly=FLAGS.run_eagerly)
385

386
387
388
389
390
391
392
393
      history = keras_model.fit(
          train_input_dataset,
          epochs=FLAGS.train_epochs,
          steps_per_epoch=steps_per_epoch,
          callbacks=callbacks,
          validation_data=eval_input_dataset,
          validation_steps=num_eval_steps,
          verbose=2)
394
395
396
397

      logging.info("Training done. Start evaluating")

      eval_results = keras_model.evaluate(
398
          eval_input_dataset, steps=num_eval_steps, verbose=2)
399
400
401
402
403

      logging.info("Keras evaluation is done.")

    if history and history.history:
      train_history = history.history
Haoyu Zhang's avatar
Haoyu Zhang committed
404
      train_loss = train_history["loss"][-1]
405

guptapriya's avatar
cleanup  
guptapriya committed
406
  stats = build_stats(train_loss, eval_results, time_callback)
407
408
409
  return stats


410
def build_stats(loss, eval_result, time_callback):
411
412
  """Normalizes and returns dictionary of stats.

Haoyu Zhang's avatar
Haoyu Zhang committed
413
414
415
416
417
418
419
420
  Args:
    loss: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback likely used during keras.fit.

  Returns:
    Dictionary of normalized results.
421
422
  """
  stats = {}
423
  if loss:
Haoyu Zhang's avatar
Haoyu Zhang committed
424
    stats["loss"] = loss
425
426

  if eval_result:
Haoyu Zhang's avatar
Haoyu Zhang committed
427
428
    stats["eval_loss"] = eval_result[0]
    stats["eval_hit_rate"] = eval_result[1]
429
430
431

  if time_callback:
    timestamp_log = time_callback.timestamp_log
Haoyu Zhang's avatar
Haoyu Zhang committed
432
433
    stats["step_timestamp_log"] = timestamp_log
    stats["train_finish_time"] = time_callback.train_finish_time
434
    if len(timestamp_log) > 1:
Haoyu Zhang's avatar
Haoyu Zhang committed
435
      stats["avg_exp_per_second"] = (
436
437
438
439
440
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    if FLAGS.tpu:
      raise ValueError("NCF in Keras does not support TPU for now")
    run_ncf(FLAGS)


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
  absl_app.run(main)