ncf_keras_main.py 15.2 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import json
Shining Sun's avatar
Shining Sun committed
26
27
28
29
import os

# pylint: disable=g-bad-import-order
from absl import flags
30
from absl import logging
Shining Sun's avatar
Shining Sun committed
31
32
33
34
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
35
from official.recommendation import constants as rconst
Shining Sun's avatar
Shining Sun committed
36
from official.recommendation import ncf_common
37
from official.recommendation import ncf_input_pipeline
Shining Sun's avatar
Shining Sun committed
38
39
40
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
41
from official.utils.misc import distribution_utils
42
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
43
44
45
46
47
48
from official.utils.misc import model_helpers


FLAGS = flags.FLAGS


guptapriya's avatar
guptapriya committed
49
50
51
52
53
54
def metric_fn(logits, dup_mask, params):
  dup_mask = tf.cast(dup_mask, tf.float32)
  logits = tf.slice(logits, [0, 0, 1], [-1, -1, -1])
  in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
      logits,
      dup_mask,
guptapriya's avatar
cleanup  
guptapriya committed
55
      params["match_mlperf"])
guptapriya's avatar
guptapriya committed
56
57
58
59
  metric_weights = tf.cast(metric_weights, tf.float32)
  return in_top_k, metric_weights


60
61
62
63
64
65
66
class MetricLayer(tf.keras.layers.Layer):
  """Custom layer of metrics for NCF model."""

  def __init__(self, params):
    super(MetricLayer, self).__init__()
    self.params = params
    self.metric = tf.keras.metrics.Mean(name=rconst.HR_METRIC_NAME)
guptapriya's avatar
guptapriya committed
67

68
69
  def call(self, inputs):
    logits, dup_mask = inputs
guptapriya's avatar
guptapriya committed
70
    in_top_k, metric_weights = metric_fn(logits, dup_mask, self.params)
guptapriya's avatar
guptapriya committed
71
    self.add_metric(self.metric(in_top_k, sample_weight=metric_weights))
guptapriya's avatar
guptapriya committed
72
    return logits
73
74


Shining Sun's avatar
Shining Sun committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


90
91
92
93
94
95
96
97
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
98
    self.stopped_epoch = 0
99
100
101
102
103
104
105
106
107

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
Haoyu Zhang's avatar
Haoyu Zhang committed
108
      print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
109
110
111
112
113

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
Haoyu Zhang's avatar
Haoyu Zhang committed
114
115
116
      logging.warning("Early stopping conditioned on metric `%s` "
                      "which is not available. Available metrics are: %s",
                      self.monitor, ",".join(list(logs.keys())))
117
118
119
    return monitor_value


Shining Sun's avatar
Shining Sun committed
120
121
def _get_keras_model(params):
  """Constructs and returns the model."""
Haoyu Zhang's avatar
Haoyu Zhang committed
122
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
123

124
125
126
127
  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
Shining Sun's avatar
Shining Sun committed
128
  user_input = tf.keras.layers.Input(
129
      shape=(batch_size,),
130
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
131
      name=movielens.USER_COLUMN,
132
      dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
133
134

  item_input = tf.keras.layers.Input(
135
      shape=(batch_size,),
136
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
137
      name=movielens.ITEM_COLUMN,
138
      dtype=tf.int32)
guptapriya's avatar
guptapriya committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
  valid_pt_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.VALID_POINT_MASK,
      dtype=tf.bool)

  dup_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.DUPLICATE_MASK,
      dtype=tf.int32)

  label_input = tf.keras.layers.Input(
      shape=(batch_size, 1),
      batch_size=params["batches_per_step"],
      name=rconst.TRAIN_LABEL_KEY,
      dtype=tf.bool)
157
158
159

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)
Shining Sun's avatar
Shining Sun committed
160
161
162

  base_model_output = base_model.output

163
164
165
166
  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

Shining Sun's avatar
Shining Sun committed
167
  zeros = tf.keras.layers.Lambda(
168
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
169
170

  softmax_logits = tf.keras.layers.concatenate(
171
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
172
173
      axis=-1)

174
175
176
  """CTL does metric calculation as part of eval_step function"""
  if not params["keras_use_ctl"]:
    softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])
177

Shining Sun's avatar
Shining Sun committed
178
  keras_model = tf.keras.Model(
guptapriya's avatar
guptapriya committed
179
180
181
182
183
184
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
Shining Sun's avatar
Shining Sun committed
185
186
      outputs=softmax_logits)

187
188
189
190
191
192
193
  loss_obj = tf.keras.losses.SparseCategoricalCrossentropy(
      from_logits=True,
      reduction="sum")

  keras_model.add_loss(loss_obj(
      y_true=label_input,
      y_pred=softmax_logits,
guptapriya's avatar
guptapriya committed
194
      sample_weight=valid_pt_mask_input) * 1.0 / batch_size)
195

Shining Sun's avatar
Shining Sun committed
196
197
198
199
200
  keras_model.summary()
  return keras_model


def run_ncf(_):
201
202
  """Run NCF training and eval with Keras."""

203
204
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

guptapriya's avatar
guptapriya committed
205
206
207
  if FLAGS.seed is not None:
    print("Setting tf seed")
    tf.random.set_seed(FLAGS.seed)
208

Shining Sun's avatar
Shining Sun committed
209
210
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
211
    logging.warning(
Shining Sun's avatar
Shining Sun committed
212
213
214
215
216
217
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

Shining Sun's avatar
Shining Sun committed
218
  params = ncf_common.parse_flags(FLAGS)
219
  model_helpers.apply_clean(flags.FLAGS)
Shining Sun's avatar
Shining Sun committed
220

221
222
223
224
225
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus)
  params["distribute_strategy"] = strategy

226
  if not keras_utils.is_v2_0() and strategy is not None:
227
228
    logging.error("NCF Keras only works with distribution strategy in TF 2.0")
    return
guptapriya's avatar
guptapriya committed
229

guptapriya's avatar
guptapriya committed
230
  if (params["keras_use_ctl"] and (
231
      not keras_utils.is_v2_0() or strategy is None)):
232
    logging.error(
guptapriya's avatar
guptapriya committed
233
        "Custom training loop only works with tensorflow 2.0 and dist strat.")
234
235
    return

Shining Sun's avatar
Shining Sun committed
236
  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
237
238
  # eval). This carries over that rounding to batch_size as well. This is the
  # per device batch size
Haoyu Zhang's avatar
Haoyu Zhang committed
239
  params["batch_size"] = params["eval_batch_size"]
240
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  callbacks = [time_callback]

  producer, input_meta_data = None, None
  generate_input_online = params["train_dataset_path"] is None

  if generate_input_online:
    # Start data producing thread.
    num_users, num_items, num_train_steps, num_eval_steps, producer = (
        ncf_common.get_inputs(params))
    producer.start()
    per_epoch_callback = IncrementEpochCallback(producer)
    callbacks.append(per_epoch_callback)
  else:
    assert params["eval_dataset_path"] and params["input_meta_data_path"]
    with tf.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
      input_meta_data = json.loads(reader.read().decode("utf-8"))
      num_users = input_meta_data["num_users"]
      num_items = input_meta_data["num_items"]
Shining Sun's avatar
Shining Sun committed
261
262

  params["num_users"], params["num_items"] = num_users, num_items
263
264
265
266
  (train_input_dataset, eval_input_dataset, num_train_steps, num_eval_steps) = \
      (ncf_input_pipeline.create_ncf_input_data(
          params, producer, input_meta_data))
  steps_per_epoch = None if generate_input_online else num_train_steps
267
268
269

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
guptapriya's avatar
guptapriya committed
270
        "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
271
    callbacks.append(early_stopping_callback)
272
273
  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
274
275
276
277
278
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
279

Haoyu Zhang's avatar
Haoyu Zhang committed
280
  if params["keras_use_ctl"]:
281
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
282
        reduction="sum",
283
284
285
286
287
288
289
        from_logits=True)
    train_input_iterator = strategy.make_dataset_iterator(train_input_dataset)
    eval_input_iterator = strategy.make_dataset_iterator(eval_input_dataset)

    @tf.function
    def train_step():
      """Called once per step to train the model."""
guptapriya's avatar
guptapriya committed
290
      def step_fn(features):
291
292
        """Computes loss and applied gradient per replica."""
        with tf.GradientTape() as tape:
guptapriya's avatar
guptapriya committed
293
          softmax_logits = keras_model(features)
guptapriya's avatar
guptapriya committed
294
          labels = features[rconst.TRAIN_LABEL_KEY]
295
296
297
298
299
          loss = loss_object(labels, softmax_logits,
                             sample_weight=features[rconst.VALID_POINT_MASK])
          loss *= (1.0 / (batch_size*strategy.num_replicas_in_sync))

        grads = tape.gradient(loss, keras_model.trainable_variables)
300
        # Converting gradients to dense form helps in perf on GPU for NCF
301
302
        grads = neumf_model.sparse_to_dense_grads(
            list(zip(grads, keras_model.trainable_variables)))
303
        optimizer.apply_gradients(grads)
304
305
306
307
308
309
310
311
312
313
314
        return loss

      per_replica_losses = strategy.experimental_run(step_fn,
                                                     train_input_iterator)
      mean_loss = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
      return mean_loss

    @tf.function
    def eval_step():
      """Called once per eval step to compute eval metrics."""
guptapriya's avatar
guptapriya committed
315
      def step_fn(features):
316
        """Computes eval metrics per replica."""
guptapriya's avatar
guptapriya committed
317
        softmax_logits = keras_model(features)
guptapriya's avatar
guptapriya committed
318
        in_top_k, metric_weights = metric_fn(
guptapriya's avatar
guptapriya committed
319
            softmax_logits, features[rconst.DUPLICATE_MASK], params)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        hr_sum = tf.reduce_sum(in_top_k*metric_weights)
        hr_count = tf.reduce_sum(metric_weights)
        return hr_sum, hr_count

      per_replica_hr_sum, per_replica_hr_count = (
          strategy.experimental_run(step_fn, eval_input_iterator))
      hr_sum = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
      hr_count = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
      return hr_sum, hr_count

    time_callback.on_train_begin()
    for epoch in range(FLAGS.train_epochs):
334
335
336
337
338
339
340
341
342
343
344
      for cb in callbacks:
        cb.on_epoch_begin(epoch)

      # As NCF dataset is sampled with randomness, not repeating
      # data elements in each epoch has significant impact on
      # convergence. As so, offline-generated TF record files
      # contains all epoch worth of data. Thus we do not need
      # to initialize dataset when reading from tf record files.
      if generate_input_online:
        train_input_iterator.initialize()

345
346
347
348
349
      train_loss = 0
      for step in range(num_train_steps):
        time_callback.on_batch_begin(step+epoch*num_train_steps)
        train_loss += train_step()
        time_callback.on_batch_end(step+epoch*num_train_steps)
350
      train_loss /= num_train_steps
Haoyu Zhang's avatar
Haoyu Zhang committed
351
      logging.info("Done training epoch %s, epoch loss=%s.",
352
                   epoch+1, train_loss)
353
354
355
356
357
358
359
      eval_input_iterator.initialize()
      hr_sum = 0
      hr_count = 0
      for _ in range(num_eval_steps):
        step_hr_sum, step_hr_count = eval_step()
        hr_sum += step_hr_sum
        hr_count += step_hr_count
Haoyu Zhang's avatar
Haoyu Zhang committed
360
      logging.info("Done eval epoch %s, hr=%s.", epoch+1, hr_sum/hr_count)
361
362
363
364
365
366
367
368
369
370
371

      if (FLAGS.early_stopping and
          float(hr_sum/hr_count) > params["hr_threshold"]):
        break

    time_callback.on_train_end()
    eval_results = [None, hr_sum/hr_count]

  else:
    with distribution_utils.get_strategy_scope(strategy):

372
      keras_model.compile(optimizer=optimizer,
373
374
                          run_eagerly=FLAGS.run_eagerly,
                          run_distributed=FLAGS.force_v2_in_keras_compile)
375

376
377
378
379
380
381
382
383
      history = keras_model.fit(
          train_input_dataset,
          epochs=FLAGS.train_epochs,
          steps_per_epoch=steps_per_epoch,
          callbacks=callbacks,
          validation_data=eval_input_dataset,
          validation_steps=num_eval_steps,
          verbose=2)
384
385
386
387

      logging.info("Training done. Start evaluating")

      eval_results = keras_model.evaluate(
388
          eval_input_dataset, steps=num_eval_steps, verbose=2)
389
390
391
392
393

      logging.info("Keras evaluation is done.")

    if history and history.history:
      train_history = history.history
Haoyu Zhang's avatar
Haoyu Zhang committed
394
      train_loss = train_history["loss"][-1]
395

guptapriya's avatar
cleanup  
guptapriya committed
396
  stats = build_stats(train_loss, eval_results, time_callback)
397
398
399
  return stats


400
def build_stats(loss, eval_result, time_callback):
401
402
  """Normalizes and returns dictionary of stats.

Haoyu Zhang's avatar
Haoyu Zhang committed
403
404
405
406
407
408
409
410
  Args:
    loss: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback likely used during keras.fit.

  Returns:
    Dictionary of normalized results.
411
412
  """
  stats = {}
413
  if loss:
Haoyu Zhang's avatar
Haoyu Zhang committed
414
    stats["loss"] = loss
415
416

  if eval_result:
Haoyu Zhang's avatar
Haoyu Zhang committed
417
418
    stats["eval_loss"] = eval_result[0]
    stats["eval_hit_rate"] = eval_result[1]
419
420
421

  if time_callback:
    timestamp_log = time_callback.timestamp_log
Haoyu Zhang's avatar
Haoyu Zhang committed
422
423
    stats["step_timestamp_log"] = timestamp_log
    stats["train_finish_time"] = time_callback.train_finish_time
424
    if len(timestamp_log) > 1:
Haoyu Zhang's avatar
Haoyu Zhang committed
425
      stats["avg_exp_per_second"] = (
426
427
428
429
430
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    if FLAGS.tpu:
      raise ValueError("NCF in Keras does not support TPU for now")
    run_ncf(FLAGS)


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
  absl_app.run(main)