ncf_keras_main.py 10.1 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
34
from official.recommendation import constants as rconst
Shining Sun's avatar
Shining Sun committed
35
36
37
38
from official.recommendation import ncf_common
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
39
from official.utils.misc import distribution_utils
40
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from official.utils.misc import model_helpers


FLAGS = flags.FLAGS


def _keras_loss(y_true, y_pred):
  # Here we are using the exact same loss used by the estimator
  loss = tf.losses.sparse_softmax_cross_entropy(
      labels=tf.cast(y_true, tf.int32),
      logits=y_pred)
  return loss


def _get_metric_fn(params):
  """Get the metrix fn used by model compile."""
  batch_size = params["batch_size"]

  def metric_fn(y_true, y_pred):
    """Returns the in_top_k metric."""
61
    softmax_logits = y_pred[0, :]
Shining Sun's avatar
Shining Sun committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    logits = tf.slice(softmax_logits, [0, 1], [batch_size, 1])

    # The dup mask should be obtained from input data, but we did not yet find
    # a good way of getting it with keras, so we set it to zeros to neglect the
    # repetition correction
    dup_mask = tf.zeros([batch_size, 1])

    cross_entropy, metric_fn, in_top_k, ndcg, metric_weights = (
        neumf_model.compute_eval_loss_and_metrics_helper(
            logits,
            softmax_logits,
            dup_mask,
            params["num_neg"],
            params["match_mlperf"],
            params["use_xla_for_gpu"]))

78
79
80
81
    is_training = tf.keras.backend.learning_phase()
    if isinstance(is_training, int):
      is_training = tf.constant(bool(is_training), dtype=tf.bool)

Shining Sun's avatar
Shining Sun committed
82
    in_top_k = tf.cond(
83
        is_training,
Shining Sun's avatar
Shining Sun committed
84
85
86
87
88
89
90
91
92
93
94
        lambda: tf.zeros(shape=in_top_k.shape, dtype=in_top_k.dtype),
        lambda: in_top_k)

    return in_top_k

  return metric_fn


def _get_train_and_eval_data(producer, params):
  """Returns the datasets for training and evalutating."""

95
96
97
98
99
100
101
102
103
104
105
106
107
  def preprocess_train_input(features, labels):
    """Pre-process the training data.

    This is needed because:
    - Distributed training does not support extra inputs. The current
      implementation does not use the VALID_POINT_MASK in the input, which makes
      it extra, so it needs to be removed.
    - The label needs to be extended to be used in the loss fn
    """
    features.pop(rconst.VALID_POINT_MASK)
    labels = tf.expand_dims(labels, -1)
    return features, labels

Shining Sun's avatar
Shining Sun committed
108
  train_input_fn = producer.make_input_fn(is_training=True)
109
110
  train_input_dataset = train_input_fn(params).map(
      preprocess_train_input)
Shining Sun's avatar
Shining Sun committed
111
112

  def preprocess_eval_input(features):
113
114
115
116
117
118
119
120
121
    """Pre-process the eval data.

    This is needed because:
    - Distributed training does not support extra inputs. The current
      implementation does not use the DUPLICATE_MASK in the input, which makes
      it extra, so it needs to be removed.
    - The label needs to be extended to be used in the loss fn
    """
    features.pop(rconst.DUPLICATE_MASK)
Shining Sun's avatar
Shining Sun committed
122
    labels = tf.zeros_like(features[movielens.USER_COLUMN])
123
    labels = tf.expand_dims(labels, -1)
Shining Sun's avatar
Shining Sun committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    return features, labels

  eval_input_fn = producer.make_input_fn(is_training=False)
  eval_input_dataset = eval_input_fn(params).map(
      lambda features: preprocess_eval_input(features))

  return train_input_dataset, eval_input_dataset


class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


def _get_keras_model(params):
  """Constructs and returns the model."""
  batch_size = params['batch_size']

152
153
154
155
  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
Shining Sun's avatar
Shining Sun committed
156
  user_input = tf.keras.layers.Input(
157
158
      shape=(batch_size,),
      batch_size=1,
Shining Sun's avatar
Shining Sun committed
159
      name=movielens.USER_COLUMN,
160
      dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
161
162

  item_input = tf.keras.layers.Input(
163
164
      shape=(batch_size,),
      batch_size=1,
Shining Sun's avatar
Shining Sun committed
165
      name=movielens.ITEM_COLUMN,
166
167
168
169
      dtype=tf.int32)

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)
Shining Sun's avatar
Shining Sun committed
170
171
172

  base_model_output = base_model.output

173
174
175
176
  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

Shining Sun's avatar
Shining Sun committed
177
  zeros = tf.keras.layers.Lambda(
178
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
179
180

  softmax_logits = tf.keras.layers.concatenate(
181
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
182
183
184
185
186
187
188
189
190
191
192
193
      axis=-1)

  keras_model = tf.keras.Model(
      inputs=[user_input, item_input],
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model


def run_ncf(_):
  """Run NCF training and eval with Keras."""
Shining Sun's avatar
Shining Sun committed
194
195
196
197
198
199
200
201
202
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
    tf.logging.warning(
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

Shining Sun's avatar
Shining Sun committed
203
  params = ncf_common.parse_flags(FLAGS)
204
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
205

Shining Sun's avatar
Shining Sun committed
206
207
208
209
  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
  # eval). This carries over that rounding to batch_size as well.
  params['batch_size'] = params['eval_batch_size']

Shining Sun's avatar
Shining Sun committed
210
211
212
213
214
215
216
  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  batches_per_step = params["batches_per_step"]
  train_input_dataset, eval_input_dataset = _get_train_and_eval_data(producer,
                                                                     params)
  # It is required that for distributed training, the dataset must call
  # batch(). The parameter of batch() here is the number of replicas involed,
  # such that each replica evenly gets a slice of data.
  train_input_dataset = train_input_dataset.batch(batches_per_step)
  eval_input_dataset = eval_input_dataset.batch(batches_per_step)

  strategy = ncf_common.get_distribution_strategy(params)
  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
    optimizer = ncf_common.get_optimizer(params)
    time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)

    keras_model.compile(
        loss=_keras_loss,
        metrics=[_get_metric_fn(params)],
        optimizer=optimizer)

    history = keras_model.fit(train_input_dataset,
                              epochs=FLAGS.train_epochs,
                              callbacks=[
                                  IncrementEpochCallback(producer),
                                  time_callback],
                              verbose=2)

    tf.logging.info("Training done. Start evaluating")

    eval_results = keras_model.evaluate(
        eval_input_dataset,
        steps=num_eval_steps,
        verbose=2)
Shining Sun's avatar
Shining Sun committed
250
251
252

  tf.logging.info("Keras evaluation is done.")

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
  stats = build_stats(history, eval_results, time_callback)
  return stats


def build_stats(history, eval_result, time_callback):
  """Normalizes and returns dictionary of stats.

    Args:
      history: Results of the training step. Supports both categorical_accuracy
        and sparse_categorical_accuracy.
      eval_output: Output of the eval step. Assumes first value is eval_loss and
        second value is accuracy_top_1.
      time_callback: Time tracking callback likely used during keras.fit.
    Returns:
      Dictionary of normalized results.
  """
  stats = {}
  if history and history.history:
    train_history = history.history
    stats['loss'] = train_history['loss'][-1]

  if eval_result:
    stats['eval_loss'] = eval_result[0]
    stats['eval_hit_rate'] = eval_result[1]

  if time_callback:
    timestamp_log = time_callback.timestamp_log
    stats['step_timestamp_log'] = timestamp_log
    stats['train_finish_time'] = time_callback.train_finish_time
    if len(timestamp_log) > 1:
      stats['avg_exp_per_second'] = (
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    if FLAGS.tpu:
      raise ValueError("NCF in Keras does not support TPU for now")
    run_ncf(FLAGS)


if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  ncf_common.define_ncf_flags()
  absl_app.run(main)