ncf_keras_main.py 15.9 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
30
from absl import logging
Shining Sun's avatar
Shining Sun committed
31
32
33
34
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
35
from official.recommendation import constants as rconst
Shining Sun's avatar
Shining Sun committed
36
37
38
39
from official.recommendation import ncf_common
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
40
from official.utils.misc import distribution_utils
41
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
42
43
44
45
46
47
from official.utils.misc import model_helpers


FLAGS = flags.FLAGS


guptapriya's avatar
guptapriya committed
48
49
50
51
52
53
54
55
56
57
58
def metric_fn(logits, dup_mask, params):
  dup_mask = tf.cast(dup_mask, tf.float32)
  logits = tf.slice(logits, [0, 0, 1], [-1, -1, -1])
  in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
      logits,
      dup_mask,
      self.params["match_mlperf"])
  metric_weights = tf.cast(metric_weights, tf.float32)
  return in_top_k, metric_weights


59
60
61
62
63
64
65
66
67
68
69
70
class MetricLayer(tf.keras.layers.Layer):
  """Custom layer of metrics for NCF model."""

  def __init__(self, params):
    super(MetricLayer, self).__init__()
    self.params = params

  def build(self, input_shape):
    self.metric = tf.keras.metrics.Mean(name=rconst.HR_METRIC_NAME)

  def call(self, inputs):
    logits, dup_mask = inputs
guptapriya's avatar
guptapriya committed
71
    in_top_k, metric_weights = metric_fn(logits, dup_mask, self.params)
72
    self.add_metric(self.metric(in_top_k, metric_weights))
guptapriya's avatar
guptapriya committed
73
    return logits
74
75


guptapriya's avatar
guptapriya committed
76
def _get_train_and_eval_data(producer, params):
Shining Sun's avatar
Shining Sun committed
77
78
  """Returns the datasets for training and evalutating."""

79
80
81
82
  def preprocess_train_input(features, labels):
    """Pre-process the training data.

    This is needed because:
83
84
85
86
    - Distributed training with keras fit does not support extra inputs. The
      current implementation for fit does not use the VALID_POINT_MASK in the
      input, which makes it extra, so it needs to be removed when using keras
      fit.
87
88
89
    - The label needs to be extended to be used in the loss fn
    """
    labels = tf.expand_dims(labels, -1)
90
91
92
    fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN])
    features[rconst.DUPLICATE_MASK] = fake_dup_mask
    features[rconst.TRAIN_LABEL_KEY] = labels
93
94
    return features, labels

Shining Sun's avatar
Shining Sun committed
95
  train_input_fn = producer.make_input_fn(is_training=True)
96
97
  train_input_dataset = train_input_fn(params).map(
      preprocess_train_input)
98
  if not params["keras_use_ctl"]:
99
    train_input_dataset = train_input_dataset.repeat(FLAGS.train_epochs)
100

Shining Sun's avatar
Shining Sun committed
101
  def preprocess_eval_input(features):
102
103
104
    """Pre-process the eval data.

    This is needed because:
105
106
107
108
    - Distributed training with keras fit does not support extra inputs. The
      current implementation for fit does not use the DUPLICATE_MASK in the
      input, which makes it extra, so it needs to be removed when using keras
      fit.
109
110
    - The label needs to be extended to be used in the loss fn
    """
111
    labels = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool)
112
    labels = tf.expand_dims(labels, -1)
113
114
115
116
    fake_valit_pt_mask = tf.cast(
        tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool)
    features[rconst.VALID_POINT_MASK] = fake_valit_pt_mask
    features[rconst.TRAIN_LABEL_KEY] = labels
Shining Sun's avatar
Shining Sun committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    return features, labels

  eval_input_fn = producer.make_input_fn(is_training=False)
  eval_input_dataset = eval_input_fn(params).map(
      lambda features: preprocess_eval_input(features))

  return train_input_dataset, eval_input_dataset


class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


141
142
143
144
145
146
147
148
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
149
    self.stopped_epoch = 0
150
151
152
153
154
155
156
157
158

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
Haoyu Zhang's avatar
Haoyu Zhang committed
159
      print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
160
161
162
163
164

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
Haoyu Zhang's avatar
Haoyu Zhang committed
165
166
167
      logging.warning("Early stopping conditioned on metric `%s` "
                      "which is not available. Available metrics are: %s",
                      self.monitor, ",".join(list(logs.keys())))
168
169
170
    return monitor_value


Shining Sun's avatar
Shining Sun committed
171
172
def _get_keras_model(params):
  """Constructs and returns the model."""
Haoyu Zhang's avatar
Haoyu Zhang committed
173
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
174

175
176
177
178
  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
Shining Sun's avatar
Shining Sun committed
179
  user_input = tf.keras.layers.Input(
180
      shape=(batch_size,),
181
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
182
      name=movielens.USER_COLUMN,
183
      dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
184
185

  item_input = tf.keras.layers.Input(
186
      shape=(batch_size,),
187
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
188
      name=movielens.ITEM_COLUMN,
189
      dtype=tf.int32)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
  
  valid_pt_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.VALID_POINT_MASK,
      dtype=tf.bool)

  dup_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.DUPLICATE_MASK,
      dtype=tf.int32)

  label_input = tf.keras.layers.Input(
      shape=(batch_size, 1),
      batch_size=params["batches_per_step"],
      name=rconst.TRAIN_LABEL_KEY,
      dtype=tf.bool)
208
209
210

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)
Shining Sun's avatar
Shining Sun committed
211
212
213

  base_model_output = base_model.output

214
215
216
217
  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

Shining Sun's avatar
Shining Sun committed
218
  zeros = tf.keras.layers.Lambda(
219
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
220
221

  softmax_logits = tf.keras.layers.concatenate(
222
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
223
224
      axis=-1)

225
226
  softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])

Shining Sun's avatar
Shining Sun committed
227
  keras_model = tf.keras.Model(
guptapriya's avatar
guptapriya committed
228
229
230
231
232
233
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
Shining Sun's avatar
Shining Sun committed
234
235
      outputs=softmax_logits)

236
237
238
239
240
241
242
243
244
  loss_obj = tf.keras.losses.SparseCategoricalCrossentropy(
      from_logits=True,
      reduction="sum")

  keras_model.add_loss(loss_obj(
      y_true=label_input,
      y_pred=softmax_logits,
      sample_weight=valid_pt_mask_input) * 1.0 / batch_size)

Shining Sun's avatar
Shining Sun committed
245
246
247
248
249
250
  keras_model.summary()
  return keras_model


def run_ncf(_):
  """Run NCF training and eval with Keras."""
Shining Sun's avatar
Shining Sun committed
251
252
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
253
    logging.warning(
Shining Sun's avatar
Shining Sun committed
254
255
256
257
258
259
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

Shining Sun's avatar
Shining Sun committed
260
261
  params = ncf_common.parse_flags(FLAGS)

Haoyu Zhang's avatar
Haoyu Zhang committed
262
  if params["keras_use_ctl"] and int(tf.__version__.split(".")[0]) == 1:
263
264
265
266
    logging.error(
        "Custom training loop only works with tensorflow 2.0 and above.")
    return

Shining Sun's avatar
Shining Sun committed
267
  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
268
269
  # eval). This carries over that rounding to batch_size as well. This is the
  # per device batch size
Haoyu Zhang's avatar
Haoyu Zhang committed
270
  params["batch_size"] = params["eval_batch_size"]
271
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
272

Shining Sun's avatar
Shining Sun committed
273
274
275
276
277
278
279
  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

280
281
282
283
284
285
286
287
288
  batches_per_step = params["batches_per_step"]
  train_input_dataset, eval_input_dataset = _get_train_and_eval_data(producer,
                                                                     params)
  # It is required that for distributed training, the dataset must call
  # batch(). The parameter of batch() here is the number of replicas involed,
  # such that each replica evenly gets a slice of data.
  train_input_dataset = train_input_dataset.batch(batches_per_step)
  eval_input_dataset = eval_input_dataset.batch(batches_per_step)

289
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
290
  per_epoch_callback = IncrementEpochCallback(producer)
291
  callbacks = [per_epoch_callback] #, time_callback]
292
293
294
295
296
297

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
        "val_metric_fn", desired_value=FLAGS.hr_threshold)
    callbacks.append(early_stopping_callback)

298
299
300
  strategy = ncf_common.get_distribution_strategy(params)
  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
301
302
303
304
305
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
306

Haoyu Zhang's avatar
Haoyu Zhang committed
307
  if params["keras_use_ctl"]:
308
309
310
311
312
313
314
315
316
317
318
319
320
    loss_object = tf.losses.SparseCategoricalCrossentropy(
        reduction=tf.keras.losses.Reduction.SUM,
        from_logits=True)
    train_input_iterator = strategy.make_dataset_iterator(train_input_dataset)
    eval_input_iterator = strategy.make_dataset_iterator(eval_input_dataset)

    @tf.function
    def train_step():
      """Called once per step to train the model."""
      def step_fn(inputs):
        """Computes loss and applied gradient per replica."""
        features, labels = inputs
        with tf.GradientTape() as tape:
guptapriya's avatar
guptapriya committed
321
          softmax_logits = keras_model(features)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
          loss = loss_object(labels, softmax_logits,
                             sample_weight=features[rconst.VALID_POINT_MASK])
          loss *= (1.0 / (batch_size*strategy.num_replicas_in_sync))

        grads = tape.gradient(loss, keras_model.trainable_variables)
        optimizer.apply_gradients(list(zip(grads,
                                           keras_model.trainable_variables)))
        return loss

      per_replica_losses = strategy.experimental_run(step_fn,
                                                     train_input_iterator)
      mean_loss = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
      return mean_loss

    @tf.function
    def eval_step():
      """Called once per eval step to compute eval metrics."""
      def step_fn(inputs):
        """Computes eval metrics per replica."""
        features, _ = inputs
guptapriya's avatar
guptapriya committed
343
        softmax_logits = keras_model(features)
guptapriya's avatar
guptapriya committed
344
345
        in_top_k, metric_weights = metric_fn(
          logits, features[rconst.DUPLICATE_MASK], params)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        hr_sum = tf.reduce_sum(in_top_k*metric_weights)
        hr_count = tf.reduce_sum(metric_weights)
        return hr_sum, hr_count

      per_replica_hr_sum, per_replica_hr_count = (
          strategy.experimental_run(step_fn, eval_input_iterator))
      hr_sum = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
      hr_count = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
      return hr_sum, hr_count

    time_callback.on_train_begin()
    for epoch in range(FLAGS.train_epochs):
      per_epoch_callback.on_epoch_begin(epoch)
      train_input_iterator.initialize()
      train_loss = 0
      for step in range(num_train_steps):
        time_callback.on_batch_begin(step+epoch*num_train_steps)
        train_loss += train_step()
        time_callback.on_batch_end(step+epoch*num_train_steps)
Haoyu Zhang's avatar
Haoyu Zhang committed
367
      logging.info("Done training epoch %s, epoch loss=%s.",
Haoyu Zhang's avatar
Haoyu Zhang committed
368
                   epoch+1, train_loss/num_train_steps)
369
370
371
372
373
374
375
      eval_input_iterator.initialize()
      hr_sum = 0
      hr_count = 0
      for _ in range(num_eval_steps):
        step_hr_sum, step_hr_count = eval_step()
        hr_sum += step_hr_sum
        hr_count += step_hr_count
Haoyu Zhang's avatar
Haoyu Zhang committed
376
      logging.info("Done eval epoch %s, hr=%s.", epoch+1, hr_sum/hr_count)
377
378
379
380
381
382
383
384
385
386
387

      if (FLAGS.early_stopping and
          float(hr_sum/hr_count) > params["hr_threshold"]):
        break

    time_callback.on_train_end()
    eval_results = [None, hr_sum/hr_count]

  else:
    with distribution_utils.get_strategy_scope(strategy):

guptapriya's avatar
guptapriya committed
388
      keras_model.compile(optimizer=optimizer)
389
390
391
392
393
394
395

      history = keras_model.fit(train_input_dataset,
                                steps_per_epoch=num_train_steps,
                                epochs=FLAGS.train_epochs,
                                callbacks=callbacks,
                                validation_data=eval_input_dataset,
                                validation_steps=num_eval_steps,
396
                                verbose=1)
397
398
399
400
401
402
403
404
405
406
407
408

      logging.info("Training done. Start evaluating")

      eval_results = keras_model.evaluate(
          eval_input_dataset,
          steps=num_eval_steps,
          verbose=2)

      logging.info("Keras evaluation is done.")

    if history and history.history:
      train_history = history.history
Haoyu Zhang's avatar
Haoyu Zhang committed
409
      train_loss = train_history["loss"][-1]
410

guptapriya's avatar
guptapriya committed
411
  stats = build_stats(train_loss, eval_results, None) #, time_callback)
412
413
414
  return stats


415
def build_stats(loss, eval_result, time_callback):
416
417
  """Normalizes and returns dictionary of stats.

Haoyu Zhang's avatar
Haoyu Zhang committed
418
419
420
421
422
423
424
425
  Args:
    loss: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback likely used during keras.fit.

  Returns:
    Dictionary of normalized results.
426
427
  """
  stats = {}
428
  if loss:
Haoyu Zhang's avatar
Haoyu Zhang committed
429
    stats["loss"] = loss
430
431

  if eval_result:
Haoyu Zhang's avatar
Haoyu Zhang committed
432
433
    stats["eval_loss"] = eval_result[0]
    stats["eval_hit_rate"] = eval_result[1]
434
435
436

  if time_callback:
    timestamp_log = time_callback.timestamp_log
Haoyu Zhang's avatar
Haoyu Zhang committed
437
438
    stats["step_timestamp_log"] = timestamp_log
    stats["train_finish_time"] = time_callback.train_finish_time
439
    if len(timestamp_log) > 1:
Haoyu Zhang's avatar
Haoyu Zhang committed
440
      stats["avg_exp_per_second"] = (
441
442
443
444
445
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    if FLAGS.tpu:
      raise ValueError("NCF in Keras does not support TPU for now")
    run_ncf(FLAGS)


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
  absl_app.run(main)