ncf_keras_main.py 15.8 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
30
from absl import logging
Shining Sun's avatar
Shining Sun committed
31
32
33
34
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
35
from official.recommendation import constants as rconst
Shining Sun's avatar
Shining Sun committed
36
37
38
39
from official.recommendation import ncf_common
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
40
from official.utils.misc import distribution_utils
41
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
42
43
44
45
46
47
48
49
from official.utils.misc import model_helpers


FLAGS = flags.FLAGS


def _keras_loss(y_true, y_pred):
  # Here we are using the exact same loss used by the estimator
50
51
52
53
  loss = tf.keras.losses.sparse_categorical_crossentropy(
      y_pred=y_pred,
      y_true=tf.cast(y_true, tf.int32),
      from_logits=True)
Shining Sun's avatar
Shining Sun committed
54
55
56
57
58
59
60
61
62
  return loss


def _get_metric_fn(params):
  """Get the metrix fn used by model compile."""
  batch_size = params["batch_size"]

  def metric_fn(y_true, y_pred):
    """Returns the in_top_k metric."""
63
    softmax_logits = y_pred[0, :]
Shining Sun's avatar
Shining Sun committed
64
65
66
67
68
69
70
    logits = tf.slice(softmax_logits, [0, 1], [batch_size, 1])

    # The dup mask should be obtained from input data, but we did not yet find
    # a good way of getting it with keras, so we set it to zeros to neglect the
    # repetition correction
    dup_mask = tf.zeros([batch_size, 1])

71
    _, _, in_top_k, _, _ = (
Shining Sun's avatar
Shining Sun committed
72
73
74
75
76
77
78
79
        neumf_model.compute_eval_loss_and_metrics_helper(
            logits,
            softmax_logits,
            dup_mask,
            params["num_neg"],
            params["match_mlperf"],
            params["use_xla_for_gpu"]))

80
81
82
83
    is_training = tf.keras.backend.learning_phase()
    if isinstance(is_training, int):
      is_training = tf.constant(bool(is_training), dtype=tf.bool)

Shining Sun's avatar
Shining Sun committed
84
    in_top_k = tf.cond(
85
        is_training,
Shining Sun's avatar
Shining Sun committed
86
87
88
89
90
91
92
93
94
95
96
        lambda: tf.zeros(shape=in_top_k.shape, dtype=in_top_k.dtype),
        lambda: in_top_k)

    return in_top_k

  return metric_fn


def _get_train_and_eval_data(producer, params):
  """Returns the datasets for training and evalutating."""

97
98
99
100
  def preprocess_train_input(features, labels):
    """Pre-process the training data.

    This is needed because:
101
102
103
104
    - Distributed training with keras fit does not support extra inputs. The
      current implementation for fit does not use the VALID_POINT_MASK in the
      input, which makes it extra, so it needs to be removed when using keras
      fit.
105
106
    - The label needs to be extended to be used in the loss fn
    """
107
    if not params["keras_use_ctl"]:
108
      features.pop(rconst.VALID_POINT_MASK)
109
110
111
    labels = tf.expand_dims(labels, -1)
    return features, labels

Shining Sun's avatar
Shining Sun committed
112
  train_input_fn = producer.make_input_fn(is_training=True)
113
114
  train_input_dataset = train_input_fn(params).map(
      preprocess_train_input)
115
  if not params["keras_use_ctl"]:
116
    train_input_dataset = train_input_dataset.repeat(FLAGS.train_epochs)
117

Shining Sun's avatar
Shining Sun committed
118
  def preprocess_eval_input(features):
119
120
121
    """Pre-process the eval data.

    This is needed because:
122
123
124
125
    - Distributed training with keras fit does not support extra inputs. The
      current implementation for fit does not use the DUPLICATE_MASK in the
      input, which makes it extra, so it needs to be removed when using keras
      fit.
126
127
    - The label needs to be extended to be used in the loss fn
    """
128
    if not params["keras_use_ctl"]:
129
      features.pop(rconst.DUPLICATE_MASK)
Shining Sun's avatar
Shining Sun committed
130
    labels = tf.zeros_like(features[movielens.USER_COLUMN])
131
    labels = tf.expand_dims(labels, -1)
Shining Sun's avatar
Shining Sun committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    return features, labels

  eval_input_fn = producer.make_input_fn(is_training=False)
  eval_input_dataset = eval_input_fn(params).map(
      lambda features: preprocess_eval_input(features))

  return train_input_dataset, eval_input_dataset


class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


156
157
158
159
160
161
162
163
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
164
    self.stopped_epoch = 0
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
      print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
      logging.warning('Early stopping conditioned on metric `%s` '
                      'which is not available. Available metrics are: %s',
                      self.monitor, ','.join(list(logs.keys())))
    return monitor_value


Shining Sun's avatar
Shining Sun committed
186
187
188
189
def _get_keras_model(params):
  """Constructs and returns the model."""
  batch_size = params['batch_size']

190
191
192
193
  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
Shining Sun's avatar
Shining Sun committed
194
  user_input = tf.keras.layers.Input(
195
      shape=(batch_size,),
196
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
197
      name=movielens.USER_COLUMN,
198
      dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
199
200

  item_input = tf.keras.layers.Input(
201
      shape=(batch_size,),
202
      batch_size=params["batches_per_step"],
Shining Sun's avatar
Shining Sun committed
203
      name=movielens.ITEM_COLUMN,
204
205
206
207
      dtype=tf.int32)

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)
Shining Sun's avatar
Shining Sun committed
208
209
210

  base_model_output = base_model.output

211
212
213
214
  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

Shining Sun's avatar
Shining Sun committed
215
  zeros = tf.keras.layers.Lambda(
216
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
217
218

  softmax_logits = tf.keras.layers.concatenate(
219
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
220
221
222
223
224
225
226
227
228
229
230
231
      axis=-1)

  keras_model = tf.keras.Model(
      inputs=[user_input, item_input],
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model


def run_ncf(_):
  """Run NCF training and eval with Keras."""
Shining Sun's avatar
Shining Sun committed
232
233
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
234
    logging.warning(
Shining Sun's avatar
Shining Sun committed
235
236
237
238
239
240
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

Shining Sun's avatar
Shining Sun committed
241
242
  params = ncf_common.parse_flags(FLAGS)

243
244
245
246
247
  if params['keras_use_ctl'] and int(tf.__version__.split('.')[0]) == 1:
    logging.error(
        "Custom training loop only works with tensorflow 2.0 and above.")
    return

Shining Sun's avatar
Shining Sun committed
248
  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
249
250
  # eval). This carries over that rounding to batch_size as well. This is the
  # per device batch size
Shining Sun's avatar
Shining Sun committed
251
  params['batch_size'] = params['eval_batch_size']
252
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
253

Shining Sun's avatar
Shining Sun committed
254
255
256
257
258
259
260
  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

261
262
263
264
265
266
267
268
269
  batches_per_step = params["batches_per_step"]
  train_input_dataset, eval_input_dataset = _get_train_and_eval_data(producer,
                                                                     params)
  # It is required that for distributed training, the dataset must call
  # batch(). The parameter of batch() here is the number of replicas involed,
  # such that each replica evenly gets a slice of data.
  train_input_dataset = train_input_dataset.batch(batches_per_step)
  eval_input_dataset = eval_input_dataset.batch(batches_per_step)

270
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
271
272
  per_epoch_callback = IncrementEpochCallback(producer)
  callbacks = [per_epoch_callback, time_callback]
273
274
275
276
277
278

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
        "val_metric_fn", desired_value=FLAGS.hr_threshold)
    callbacks.append(early_stopping_callback)

279
280
281
  strategy = ncf_common.get_distribution_strategy(params)
  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
282
283
284
285
286
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
287

288
  if params['keras_use_ctl']:
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    loss_object = tf.losses.SparseCategoricalCrossentropy(
        reduction=tf.keras.losses.Reduction.SUM,
        from_logits=True)
    train_input_iterator = strategy.make_dataset_iterator(train_input_dataset)
    eval_input_iterator = strategy.make_dataset_iterator(eval_input_dataset)

    @tf.function
    def train_step():
      """Called once per step to train the model."""
      def step_fn(inputs):
        """Computes loss and applied gradient per replica."""
        features, labels = inputs
        with tf.GradientTape() as tape:
          softmax_logits = keras_model([features[movielens.USER_COLUMN],
                                        features[movielens.ITEM_COLUMN]])
          loss = loss_object(labels, softmax_logits,
                             sample_weight=features[rconst.VALID_POINT_MASK])
          loss *= (1.0 / (batch_size*strategy.num_replicas_in_sync))

        grads = tape.gradient(loss, keras_model.trainable_variables)
        optimizer.apply_gradients(list(zip(grads,
                                           keras_model.trainable_variables)))
        return loss

      per_replica_losses = strategy.experimental_run(step_fn,
                                                     train_input_iterator)
      mean_loss = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
      return mean_loss

    @tf.function
    def eval_step():
      """Called once per eval step to compute eval metrics."""
      def step_fn(inputs):
        """Computes eval metrics per replica."""
        features, _ = inputs
        softmax_logits = keras_model([features[movielens.USER_COLUMN],
                                      features[movielens.ITEM_COLUMN]])
        logits = tf.slice(softmax_logits, [0, 0, 1], [-1, -1, -1])
        dup_mask = features[rconst.DUPLICATE_MASK]
        in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
            logits,
            dup_mask,
            params["match_mlperf"])
        metric_weights = tf.cast(metric_weights, tf.float32)
        hr_sum = tf.reduce_sum(in_top_k*metric_weights)
        hr_count = tf.reduce_sum(metric_weights)
        return hr_sum, hr_count

      per_replica_hr_sum, per_replica_hr_count = (
          strategy.experimental_run(step_fn, eval_input_iterator))
      hr_sum = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
      hr_count = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
      return hr_sum, hr_count

    time_callback.on_train_begin()
    for epoch in range(FLAGS.train_epochs):
      per_epoch_callback.on_epoch_begin(epoch)
      train_input_iterator.initialize()
      train_loss = 0
      for step in range(num_train_steps):
        time_callback.on_batch_begin(step+epoch*num_train_steps)
        train_loss += train_step()
        time_callback.on_batch_end(step+epoch*num_train_steps)
      logging.info("Done training epoch {}, epoch loss={}.".format(
          epoch+1, train_loss/num_train_steps))
      eval_input_iterator.initialize()
      hr_sum = 0
      hr_count = 0
      for _ in range(num_eval_steps):
        step_hr_sum, step_hr_count = eval_step()
        hr_sum += step_hr_sum
        hr_count += step_hr_count
      logging.info("Done eval epoch {}, hr={}.".format(epoch+1,
                                                       hr_sum/hr_count))

      if (FLAGS.early_stopping and
          float(hr_sum/hr_count) > params["hr_threshold"]):
        break

    time_callback.on_train_end()
    eval_results = [None, hr_sum/hr_count]

  else:
    with distribution_utils.get_strategy_scope(strategy):

      keras_model.compile(
          loss=_keras_loss,
          metrics=[_get_metric_fn(params)],
          optimizer=optimizer,
          cloning=params["clone_model_in_keras_dist_strat"])

      history = keras_model.fit(train_input_dataset,
                                steps_per_epoch=num_train_steps,
                                epochs=FLAGS.train_epochs,
                                callbacks=callbacks,
                                validation_data=eval_input_dataset,
                                validation_steps=num_eval_steps,
                                verbose=2)

      logging.info("Training done. Start evaluating")

      eval_results = keras_model.evaluate(
          eval_input_dataset,
          steps=num_eval_steps,
          verbose=2)

      logging.info("Keras evaluation is done.")

    if history and history.history:
      train_history = history.history
      train_loss = train_history['loss'][-1]

  stats = build_stats(train_loss, eval_results, time_callback)
405
406
407
  return stats


408
def build_stats(loss, eval_result, time_callback):
409
410
411
  """Normalizes and returns dictionary of stats.

    Args:
412
      loss: The final loss at training time.
413
414
415
416
417
418
419
      eval_output: Output of the eval step. Assumes first value is eval_loss and
        second value is accuracy_top_1.
      time_callback: Time tracking callback likely used during keras.fit.
    Returns:
      Dictionary of normalized results.
  """
  stats = {}
420
421
  if loss:
    stats['loss'] = loss
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

  if eval_result:
    stats['eval_loss'] = eval_result[0]
    stats['eval_hit_rate'] = eval_result[1]

  if time_callback:
    timestamp_log = time_callback.timestamp_log
    stats['step_timestamp_log'] = timestamp_log
    stats['train_finish_time'] = time_callback.train_finish_time
    if len(timestamp_log) > 1:
      stats['avg_exp_per_second'] = (
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    if FLAGS.tpu:
      raise ValueError("NCF in Keras does not support TPU for now")
    run_ncf(FLAGS)


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
  absl_app.run(main)