data_test.py 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from collections import defaultdict
22
import hashlib
23
24
import os

25
import mock
26
import numpy as np
27
import scipy.stats
28
29
30
31
import tensorflow as tf

from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
32
from official.recommendation import movielens
Hongkun Yu's avatar
Hongkun Yu committed
33
from official.recommendation import popen_helper
34
35
36
37
38
39
40


DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
41
EVAL_BATCH_SIZE = 4000
42
43
44
NUM_NEG = 4


45
46
47
48
49
END_TO_END_TRAIN_MD5 = "b218738e915e825d03939c5e305a2698"
END_TO_END_EVAL_MD5 = "d753d0f3186831466d6e218163a9501e"
FRESH_RANDOMNESS_MD5 = "63d0dff73c0e5f1048fbdc8c65021e22"


50
51
52
def mock_download(*args, **kwargs):
  return

53

54
55
56
57
# The forkpool used by data producers interacts badly with the threading
# used by TestCase. Without this patch tests will hang, and no amount
# of diligent closing and joining within the producer will prevent it.
@mock.patch.object(popen_helper, "get_forkpool", popen_helper.get_fauxpool)
58
class BaseTest(tf.test.TestCase):
59

60
  def setUp(self):
61
    tf.compat.v1.disable_eager_execution()
62
63
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
64
    tf.io.gfile.makedirs(ratings_folder)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

79
    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
80
81
    self.seen_pairs = set()
    self.holdout = {}
82
    with tf.io.gfile.GFile(self.rating_file, "w") as f:
83
84
85
86
87
88
89
90
91
92
93
94
95
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
96
    movielens.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS, NUM_ITEMS)
97

98
99
100
101
102
103
104
105
106
107
108
  def make_params(self, train_epochs=1):
    return {
        "train_epochs": train_epochs,
        "batches_per_step": 1,
        "use_seed": False,
        "batch_size": BATCH_SIZE,
        "eval_batch_size": EVAL_BATCH_SIZE,
        "num_neg": NUM_NEG,
        "match_mlperf": True,
        "use_tpu": False,
        "use_xla_for_gpu": False,
109
        "stream_files": False,
110
111
    }

112
113
  def test_preprocessing(self):
    # For the most part the necessary checks are performed within
114
115
    # _filter_index_sort()

116
117
118
119
120
121
    cache_path = os.path.join(self.temp_data_dir, "test_cache.pickle")
    data, valid_cache = data_preprocessing._filter_index_sort(
        self.rating_file, cache_path=cache_path)

    assert len(data[rconst.USER_MAP]) == NUM_USERS
    assert len(data[rconst.ITEM_MAP]) == NUM_ITEMS
122
123
124

  def drain_dataset(self, dataset, g):
    # type: (tf.data.Dataset, tf.Graph) -> list
125
    with self.session(graph=g) as sess:
126
      with g.as_default():
Jiri Simsa's avatar
Jiri Simsa committed
127
        batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
128
129
130
131
132
133
134
135
      output = []
      while True:
        try:
          output.append(sess.run(batch))
        except tf.errors.OutOfRangeError:
          break
    return output

136
  def _test_end_to_end(self, constructor_type):
137
138
    params = self.make_params(train_epochs=1)
    _, _, producer = data_preprocessing.instantiate_pipeline(
139
140
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
141
142
143
144

    producer.start()
    producer.join()
    assert producer._fatal_exception is None
145

146
147
148
149
150
151
    user_inv_map = {v: k for k, v in producer.user_map.items()}
    item_inv_map = {v: k for k, v in producer.item_map.items()}

    # ==========================================================================
    # == Training Data =========================================================
    # ==========================================================================
152
153
    g = tf.Graph()
    with g.as_default():
154
155
156
      input_fn = producer.make_input_fn(is_training=True)
      dataset = input_fn(params)

157
158
    first_epoch = self.drain_dataset(dataset=dataset, g=g)

159
    counts = defaultdict(int)
160
161
162
163
    train_examples = {
        True: set(),
        False: set(),
    }
164

165
    md5 = hashlib.md5()
166
    for features, labels in first_epoch:
167
      data_list = [
168
169
170
171
172
          features[movielens.USER_COLUMN].flatten(),
          features[movielens.ITEM_COLUMN].flatten(),
          features[rconst.VALID_POINT_MASK].flatten(),
          labels.flatten()
      ]
Taylor Robie's avatar
Taylor Robie committed
173
174
175
      for i in data_list:
        md5.update(i.tobytes())

176
      for u, i, v, l in zip(*data_list):
177
178
        if not v:
          continue  # ignore padding
179

180
181
182
183
184
185
186
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
187
          self.assertEqual(i_raw, self.holdout[u_raw][1])
188
        train_examples[l].add((u_raw, i_raw))
189
190
        counts[(u_raw, i_raw)] += 1

191
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_TRAIN_MD5)
192

193
    num_positives_seen = len(train_examples[True])
194
    self.assertEqual(producer._train_pos_users.shape[0], num_positives_seen)
195
196
197

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    self.assertGreater(
        len(train_examples[False]) / NUM_NEG / num_positives_seen, 0.9)

    # This checks that the samples produced are independent by checking the
    # number of duplicate entries. If workers are not properly independent there
    # will be lots of repeated pairs.
    self.assertLess(np.mean(list(counts.values())), 1.1)

    # ==========================================================================
    # == Eval Data =============================================================
    # ==========================================================================
    with g.as_default():
      input_fn = producer.make_input_fn(is_training=False)
      dataset = input_fn(params)
212

213
    eval_data = self.drain_dataset(dataset=dataset, g=g)
214

215
    current_user = None
216
    md5 = hashlib.md5()
217
    for features in eval_data:
218
      data_list = [
219
220
221
222
          features[movielens.USER_COLUMN].flatten(),
          features[movielens.ITEM_COLUMN].flatten(),
          features[rconst.DUPLICATE_MASK].flatten()
      ]
Taylor Robie's avatar
Taylor Robie committed
223
224
225
      for i in data_list:
        md5.update(i.tobytes())

226
      for idx, (u, i, d) in enumerate(zip(*data_list)):
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if current_user is None:
          current_user = u

        # Ensure that users appear in blocks, as the evaluation logic expects
        # this structure.
        self.assertEqual(u, current_user)

        # The structure of evaluation data is 999 negative examples followed
        # by the holdout positive.
        if not (idx + 1) % (rconst.NUM_EVAL_NEGATIVES + 1):
          # Check that the last element in each chunk is the holdout item.
          self.assertEqual(i_raw, self.holdout[u_raw][1])
          current_user = None

        elif i_raw == self.holdout[u_raw][1]:
          # Because the holdout item is not given to the negative generation
          # process, it can appear as a negative. In that case, it should be
          # masked out as a duplicate. (Since the true positive is placed at
          # the end and would therefore lose the tie.)
          assert d

        else:
          # Otherwise check that the other 999 points for a user are selected
          # from the negatives.
          assert (u_raw, i_raw) not in self.seen_pairs

255
256
257
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_EVAL_MD5)

  def _test_fresh_randomness(self, constructor_type):
258
259
260
    train_epochs = 5
    params = self.make_params(train_epochs=train_epochs)
    _, _, producer = data_preprocessing.instantiate_pipeline(
261
262
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    producer.start()

    results = []
    g = tf.Graph()
    with g.as_default():
      for _ in range(train_epochs):
        input_fn = producer.make_input_fn(is_training=True)
        dataset = input_fn(params)
        results.extend(self.drain_dataset(dataset=dataset, g=g))

    producer.join()
    assert producer._fatal_exception is None

    positive_counts, negative_counts = defaultdict(int), defaultdict(int)
278
    md5 = hashlib.md5()
279
    for features, labels in results:
280
      data_list = [
281
282
283
284
285
          features[movielens.USER_COLUMN].flatten(),
          features[movielens.ITEM_COLUMN].flatten(),
          features[rconst.VALID_POINT_MASK].flatten(),
          labels.flatten()
      ]
Taylor Robie's avatar
Taylor Robie committed
286
287
288
      for i in data_list:
        md5.update(i.tobytes())

289
      for u, i, v, l in zip(*data_list):
290
291
292
293
294
295
296
297
        if not v:
          continue  # ignore padding

        if l:
          positive_counts[(u, i)] += 1
        else:
          negative_counts[(u, i)] += 1

298
299
    self.assertRegexpMatches(md5.hexdigest(), FRESH_RANDOMNESS_MD5)

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    # The positive examples should appear exactly once each epoch
    self.assertAllEqual(list(positive_counts.values()),
                        [train_epochs for _ in positive_counts])

    # The threshold for the negatives is heuristic, but in general repeats are
    # expected, but should not appear too frequently.

    pair_cardinality = NUM_USERS * NUM_ITEMS
    neg_pair_cardinality = pair_cardinality - len(self.seen_pairs)

    # Approximation for the expectation number of times that a particular
    # negative will appear in a given epoch. Implicit in this calculation is the
    # treatment of all negative pairs as equally likely. Normally is not
    # necessarily reasonable; however the generation in self.setUp() will
    # approximate this behavior sufficiently for heuristic testing.
    e_sample = len(self.seen_pairs) * NUM_NEG / neg_pair_cardinality

    # The frequency of occurance of a given negative pair should follow an
    # approximately binomial distribution in the limit that the cardinality of
    # the negative pair set >> number of samples per epoch.
    approx_pdf = scipy.stats.binom.pmf(k=np.arange(train_epochs+1),
                                       n=train_epochs, p=e_sample)

    # Tally the actual observed counts.
    count_distribution = [0 for _ in range(train_epochs + 1)]
    for i in negative_counts.values():
      i = min([i, train_epochs])  # round down tail for simplicity.
      count_distribution[i] += 1
    count_distribution[0] = neg_pair_cardinality - sum(count_distribution[1:])

    # Check that the frequency of negative pairs is approximately binomial.
    for i in range(train_epochs + 1):
      if approx_pdf[i] < 0.05:
        continue  # Variance will be high at the tails.

      observed_fraction = count_distribution[i] / neg_pair_cardinality
      deviation = (2 * abs(observed_fraction - approx_pdf[i]) /
                   (observed_fraction + approx_pdf[i]))

      self.assertLess(deviation, 0.2)
340

Taylor Robie's avatar
Taylor Robie committed
341
342
  def test_end_to_end_materialized(self):
    self._test_end_to_end("materialized")
343

Taylor Robie's avatar
Taylor Robie committed
344
345
346
347
348
349
350
351
  def test_end_to_end_bisection(self):
    self._test_end_to_end("bisection")

  def test_fresh_randomness_materialized(self):
    self._test_fresh_randomness("materialized")

  def test_fresh_randomness_bisection(self):
    self._test_fresh_randomness("bisection")
352

353
354

if __name__ == "__main__":
Taylor Robie's avatar
Taylor Robie committed
355
  tf.test.main()