data_test.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from collections import defaultdict
22
import os
23
import pickle
24
25
26
import time

import numpy as np
27
import pandas as pd
28
import scipy.stats
29
30
31
32
33
import tensorflow as tf

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
34
from official.recommendation import stat_utils
35
36
37
38
39
40
41


DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
42
EVAL_BATCH_SIZE = 4000
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
NUM_NEG = 4


def mock_download(*args, **kwargs):
  return


class BaseTest(tf.test.TestCase):
  def setUp(self):
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.gfile.MakeDirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

69
    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
70
71
    self.seen_pairs = set()
    self.holdout = {}
72
    with tf.gfile.Open(self.rating_file, "w") as f:
73
74
75
76
77
78
79
80
81
82
83
84
85
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
86
87
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS)
88

89
90
91
92
93
94
95
96
97
98
99
100
101
  def make_params(self, train_epochs=1):
    return {
        "train_epochs": train_epochs,
        "batches_per_step": 1,
        "use_seed": False,
        "batch_size": BATCH_SIZE,
        "eval_batch_size": EVAL_BATCH_SIZE,
        "num_neg": NUM_NEG,
        "match_mlperf": True,
        "use_tpu": False,
        "use_xla_for_gpu": False,
    }

102
103
  def test_preprocessing(self):
    # For the most part the necessary checks are performed within
104
105
106
107
108
109
110
111
112
113
114
    # _filter_index_sort()

    for match_mlperf in [True, False]:
      cache_path = os.path.join(self.temp_data_dir, "test_cache.pickle")
      data, valid_cache = data_preprocessing._filter_index_sort(
          self.rating_file, cache_path=cache_path,
          match_mlperf=match_mlperf)

      assert len(data[rconst.USER_MAP]) == NUM_USERS
      assert len(data[rconst.ITEM_MAP]) == NUM_ITEMS
      assert not valid_cache
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

  def drain_dataset(self, dataset, g):
    # type: (tf.data.Dataset, tf.Graph) -> list
    with self.test_session(graph=g) as sess:
      with g.as_default():
        batch = dataset.make_one_shot_iterator().get_next()
      output = []
      while True:
        try:
          output.append(sess.run(batch))
        except tf.errors.OutOfRangeError:
          break
    return output

  def test_end_to_end(self):
130
131
    params = self.make_params(train_epochs=1)
    _, _, producer = data_preprocessing.instantiate_pipeline(
Taylor Robie's avatar
delint  
Taylor Robie committed
132
        dataset=DATASET, data_dir=self.temp_data_dir, params=params)
133
134
135
136

    producer.start()
    producer.join()
    assert producer._fatal_exception is None
137

138
139
140
141
142
143
    user_inv_map = {v: k for k, v in producer.user_map.items()}
    item_inv_map = {v: k for k, v in producer.item_map.items()}

    # ==========================================================================
    # == Training Data =========================================================
    # ==========================================================================
144
145
    g = tf.Graph()
    with g.as_default():
146
147
148
      input_fn = producer.make_input_fn(is_training=True)
      dataset = input_fn(params)

149
150
    first_epoch = self.drain_dataset(dataset=dataset, g=g)

151
    counts = defaultdict(int)
152
153
154
155
    train_examples = {
        True: set(),
        False: set(),
    }
156

157
    for features, labels in first_epoch:
158
159
160
161
162
      for u, i, v, l in zip(
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
          features[rconst.VALID_POINT_MASK], labels):
        if not v:
          continue  # ignore padding
163

164
165
166
167
168
169
170
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
171
          self.assertEqual(i_raw, self.holdout[u_raw][1])
172
        train_examples[l].add((u_raw, i_raw))
173
174
        counts[(u_raw, i_raw)] += 1

175
176
    num_positives_seen = len(train_examples[True])

177
    self.assertEqual(producer._train_pos_users.shape[0], num_positives_seen)
178
179
180

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    self.assertGreater(
        len(train_examples[False]) / NUM_NEG / num_positives_seen, 0.9)

    # This checks that the samples produced are independent by checking the
    # number of duplicate entries. If workers are not properly independent there
    # will be lots of repeated pairs.
    self.assertLess(np.mean(list(counts.values())), 1.1)

    # ==========================================================================
    # == Eval Data =============================================================
    # ==========================================================================
    with g.as_default():
      input_fn = producer.make_input_fn(is_training=False)
      dataset = input_fn(params)
195

196
    eval_data = self.drain_dataset(dataset=dataset, g=g)
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    current_user = None
    for features in eval_data:
      for idx, (u, i, d) in enumerate(zip(features[movielens.USER_COLUMN],
                                          features[movielens.ITEM_COLUMN],
                                          features[rconst.DUPLICATE_MASK])):
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if current_user is None:
          current_user = u

        # Ensure that users appear in blocks, as the evaluation logic expects
        # this structure.
        self.assertEqual(u, current_user)

        # The structure of evaluation data is 999 negative examples followed
        # by the holdout positive.
        if not (idx + 1) % (rconst.NUM_EVAL_NEGATIVES + 1):
          # Check that the last element in each chunk is the holdout item.
          self.assertEqual(i_raw, self.holdout[u_raw][1])
          current_user = None

        elif i_raw == self.holdout[u_raw][1]:
          # Because the holdout item is not given to the negative generation
          # process, it can appear as a negative. In that case, it should be
          # masked out as a duplicate. (Since the true positive is placed at
          # the end and would therefore lose the tie.)
          assert d

        else:
          # Otherwise check that the other 999 points for a user are selected
          # from the negatives.
          assert (u_raw, i_raw) not in self.seen_pairs

  def test_fresh_randomness(self):
    train_epochs = 5
    params = self.make_params(train_epochs=train_epochs)
    _, _, producer = data_preprocessing.instantiate_pipeline(
Taylor Robie's avatar
delint  
Taylor Robie committed
235
        dataset=DATASET, data_dir=self.temp_data_dir, params=params)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    producer.start()

    results = []
    g = tf.Graph()
    with g.as_default():
      for _ in range(train_epochs):
        input_fn = producer.make_input_fn(is_training=True)
        dataset = input_fn(params)
        results.extend(self.drain_dataset(dataset=dataset, g=g))

    producer.join()
    assert producer._fatal_exception is None

    positive_counts, negative_counts = defaultdict(int), defaultdict(int)
    for features, labels in results:
      for u, i, v, l in zip(
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
          features[rconst.VALID_POINT_MASK], labels):
        if not v:
          continue  # ignore padding

        if l:
          positive_counts[(u, i)] += 1
        else:
          negative_counts[(u, i)] += 1

    # The positive examples should appear exactly once each epoch
    self.assertAllEqual(list(positive_counts.values()),
                        [train_epochs for _ in positive_counts])

    # The threshold for the negatives is heuristic, but in general repeats are
    # expected, but should not appear too frequently.

    pair_cardinality = NUM_USERS * NUM_ITEMS
    neg_pair_cardinality = pair_cardinality - len(self.seen_pairs)

    # Approximation for the expectation number of times that a particular
    # negative will appear in a given epoch. Implicit in this calculation is the
    # treatment of all negative pairs as equally likely. Normally is not
    # necessarily reasonable; however the generation in self.setUp() will
    # approximate this behavior sufficiently for heuristic testing.
    e_sample = len(self.seen_pairs) * NUM_NEG / neg_pair_cardinality

    # The frequency of occurance of a given negative pair should follow an
    # approximately binomial distribution in the limit that the cardinality of
    # the negative pair set >> number of samples per epoch.
    approx_pdf = scipy.stats.binom.pmf(k=np.arange(train_epochs+1),
                                       n=train_epochs, p=e_sample)

    # Tally the actual observed counts.
    count_distribution = [0 for _ in range(train_epochs + 1)]
    for i in negative_counts.values():
      i = min([i, train_epochs])  # round down tail for simplicity.
      count_distribution[i] += 1
    count_distribution[0] = neg_pair_cardinality - sum(count_distribution[1:])

    # Check that the frequency of negative pairs is approximately binomial.
    for i in range(train_epochs + 1):
      if approx_pdf[i] < 0.05:
        continue  # Variance will be high at the tails.

      observed_fraction = count_distribution[i] / neg_pair_cardinality
      deviation = (2 * abs(observed_fraction - approx_pdf[i]) /
                   (observed_fraction + approx_pdf[i]))

      self.assertLess(deviation, 0.2)
303

304
305
306
307

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.test.main()