data_test.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from collections import defaultdict
22
import hashlib
23
import os
24
import pickle
25
26
27
import time

import numpy as np
28
import pandas as pd
29
import scipy.stats
30
31
32
33
34
import tensorflow as tf

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
35
from official.recommendation import popen_helper
36
from official.recommendation import stat_utils
37
38
39
40
41
42
43


DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
44
EVAL_BATCH_SIZE = 4000
45
46
47
NUM_NEG = 4


48
49
50
51
52
END_TO_END_TRAIN_MD5 = "b218738e915e825d03939c5e305a2698"
END_TO_END_EVAL_MD5 = "d753d0f3186831466d6e218163a9501e"
FRESH_RANDOMNESS_MD5 = "63d0dff73c0e5f1048fbdc8c65021e22"


53
54
55
56
57
58
def mock_download(*args, **kwargs):
  return


class BaseTest(tf.test.TestCase):
  def setUp(self):
59
60
61
62
63
64
    # The forkpool used by data producers interacts badly with the threading
    # used by TestCase. Without this monkey patch tests will hang, and no amount
    # of diligent closing and joining within the producer will prevent it.
    self._get_forkpool = popen_helper.get_forkpool
    popen_helper.get_forkpool = popen_helper.get_fauxpool

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.gfile.MakeDirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

82
    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
83
84
    self.seen_pairs = set()
    self.holdout = {}
85
    with tf.gfile.Open(self.rating_file, "w") as f:
86
87
88
89
90
91
92
93
94
95
96
97
98
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
99
100
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS)
101

102
103
104
  def tearDown(self):
    popen_helper.get_forkpool = self._get_forkpool

105
106
107
108
109
110
111
112
113
114
115
116
117
  def make_params(self, train_epochs=1):
    return {
        "train_epochs": train_epochs,
        "batches_per_step": 1,
        "use_seed": False,
        "batch_size": BATCH_SIZE,
        "eval_batch_size": EVAL_BATCH_SIZE,
        "num_neg": NUM_NEG,
        "match_mlperf": True,
        "use_tpu": False,
        "use_xla_for_gpu": False,
    }

118
119
  def test_preprocessing(self):
    # For the most part the necessary checks are performed within
120
121
122
123
124
125
126
127
128
129
130
    # _filter_index_sort()

    for match_mlperf in [True, False]:
      cache_path = os.path.join(self.temp_data_dir, "test_cache.pickle")
      data, valid_cache = data_preprocessing._filter_index_sort(
          self.rating_file, cache_path=cache_path,
          match_mlperf=match_mlperf)

      assert len(data[rconst.USER_MAP]) == NUM_USERS
      assert len(data[rconst.ITEM_MAP]) == NUM_ITEMS
      assert not valid_cache
131
132
133
134
135
136
137
138
139
140
141
142
143
144

  def drain_dataset(self, dataset, g):
    # type: (tf.data.Dataset, tf.Graph) -> list
    with self.test_session(graph=g) as sess:
      with g.as_default():
        batch = dataset.make_one_shot_iterator().get_next()
      output = []
      while True:
        try:
          output.append(sess.run(batch))
        except tf.errors.OutOfRangeError:
          break
    return output

145
  def _test_end_to_end(self, constructor_type):
146
147
    params = self.make_params(train_epochs=1)
    _, _, producer = data_preprocessing.instantiate_pipeline(
148
149
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
150
151
152
153

    producer.start()
    producer.join()
    assert producer._fatal_exception is None
154

155
156
157
158
159
160
    user_inv_map = {v: k for k, v in producer.user_map.items()}
    item_inv_map = {v: k for k, v in producer.item_map.items()}

    # ==========================================================================
    # == Training Data =========================================================
    # ==========================================================================
161
162
    g = tf.Graph()
    with g.as_default():
163
164
165
      input_fn = producer.make_input_fn(is_training=True)
      dataset = input_fn(params)

166
167
    first_epoch = self.drain_dataset(dataset=dataset, g=g)

168
    counts = defaultdict(int)
169
170
171
172
    train_examples = {
        True: set(),
        False: set(),
    }
173

174
    md5 = hashlib.md5()
175
    for features, labels in first_epoch:
176
      data_list = [
177
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
178
179
180
          features[rconst.VALID_POINT_MASK], labels]
      [md5.update(i.tobytes()) for i in data_list]
      for u, i, v, l in zip(*data_list):
181
182
        if not v:
          continue  # ignore padding
183

184
185
186
187
188
189
190
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
191
          self.assertEqual(i_raw, self.holdout[u_raw][1])
192
        train_examples[l].add((u_raw, i_raw))
193
194
        counts[(u_raw, i_raw)] += 1

195
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_TRAIN_MD5)
196

197
    num_positives_seen = len(train_examples[True])
198
    self.assertEqual(producer._train_pos_users.shape[0], num_positives_seen)
199
200
201

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    self.assertGreater(
        len(train_examples[False]) / NUM_NEG / num_positives_seen, 0.9)

    # This checks that the samples produced are independent by checking the
    # number of duplicate entries. If workers are not properly independent there
    # will be lots of repeated pairs.
    self.assertLess(np.mean(list(counts.values())), 1.1)

    # ==========================================================================
    # == Eval Data =============================================================
    # ==========================================================================
    with g.as_default():
      input_fn = producer.make_input_fn(is_training=False)
      dataset = input_fn(params)
216

217
    eval_data = self.drain_dataset(dataset=dataset, g=g)
218

219
    current_user = None
220
    md5 = hashlib.md5()
221
    for features in eval_data:
222
223
224
225
226
      data_list = [
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
          features[rconst.DUPLICATE_MASK]]
      [md5.update(i.tobytes()) for i in data_list]
      for idx, (u, i, d) in enumerate(zip(*data_list)):
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if current_user is None:
          current_user = u

        # Ensure that users appear in blocks, as the evaluation logic expects
        # this structure.
        self.assertEqual(u, current_user)

        # The structure of evaluation data is 999 negative examples followed
        # by the holdout positive.
        if not (idx + 1) % (rconst.NUM_EVAL_NEGATIVES + 1):
          # Check that the last element in each chunk is the holdout item.
          self.assertEqual(i_raw, self.holdout[u_raw][1])
          current_user = None

        elif i_raw == self.holdout[u_raw][1]:
          # Because the holdout item is not given to the negative generation
          # process, it can appear as a negative. In that case, it should be
          # masked out as a duplicate. (Since the true positive is placed at
          # the end and would therefore lose the tie.)
          assert d

        else:
          # Otherwise check that the other 999 points for a user are selected
          # from the negatives.
          assert (u_raw, i_raw) not in self.seen_pairs

255
256
257
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_EVAL_MD5)

  def _test_fresh_randomness(self, constructor_type):
258
259
260
    train_epochs = 5
    params = self.make_params(train_epochs=train_epochs)
    _, _, producer = data_preprocessing.instantiate_pipeline(
261
262
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    producer.start()

    results = []
    g = tf.Graph()
    with g.as_default():
      for _ in range(train_epochs):
        input_fn = producer.make_input_fn(is_training=True)
        dataset = input_fn(params)
        results.extend(self.drain_dataset(dataset=dataset, g=g))

    producer.join()
    assert producer._fatal_exception is None

    positive_counts, negative_counts = defaultdict(int), defaultdict(int)
278
    md5 = hashlib.md5()
279
    for features, labels in results:
280
      data_list = [
281
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
282
283
284
          features[rconst.VALID_POINT_MASK], labels]
      [md5.update(i.tobytes()) for i in data_list]
      for u, i, v, l in zip(*data_list):
285
286
287
288
289
290
291
292
        if not v:
          continue  # ignore padding

        if l:
          positive_counts[(u, i)] += 1
        else:
          negative_counts[(u, i)] += 1

293
294
    self.assertRegexpMatches(md5.hexdigest(), FRESH_RANDOMNESS_MD5)

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    # The positive examples should appear exactly once each epoch
    self.assertAllEqual(list(positive_counts.values()),
                        [train_epochs for _ in positive_counts])

    # The threshold for the negatives is heuristic, but in general repeats are
    # expected, but should not appear too frequently.

    pair_cardinality = NUM_USERS * NUM_ITEMS
    neg_pair_cardinality = pair_cardinality - len(self.seen_pairs)

    # Approximation for the expectation number of times that a particular
    # negative will appear in a given epoch. Implicit in this calculation is the
    # treatment of all negative pairs as equally likely. Normally is not
    # necessarily reasonable; however the generation in self.setUp() will
    # approximate this behavior sufficiently for heuristic testing.
    e_sample = len(self.seen_pairs) * NUM_NEG / neg_pair_cardinality

    # The frequency of occurance of a given negative pair should follow an
    # approximately binomial distribution in the limit that the cardinality of
    # the negative pair set >> number of samples per epoch.
    approx_pdf = scipy.stats.binom.pmf(k=np.arange(train_epochs+1),
                                       n=train_epochs, p=e_sample)

    # Tally the actual observed counts.
    count_distribution = [0 for _ in range(train_epochs + 1)]
    for i in negative_counts.values():
      i = min([i, train_epochs])  # round down tail for simplicity.
      count_distribution[i] += 1
    count_distribution[0] = neg_pair_cardinality - sum(count_distribution[1:])

    # Check that the frequency of negative pairs is approximately binomial.
    for i in range(train_epochs + 1):
      if approx_pdf[i] < 0.05:
        continue  # Variance will be high at the tails.

      observed_fraction = count_distribution[i] / neg_pair_cardinality
      deviation = (2 * abs(observed_fraction - approx_pdf[i]) /
                   (observed_fraction + approx_pdf[i]))

      self.assertLess(deviation, 0.2)
335

336
337
338
339
340
341
342
343
344
345
346
347
  def test_end_to_end_materialized(self):
    self._test_end_to_end("materialized")

  def test_end_to_end_bisection(self):
    self._test_end_to_end("bisection")

  def test_fresh_randomness_materialized(self):
    self._test_fresh_randomness("materialized")

  def test_fresh_randomness_bisection(self):
    self._test_fresh_randomness("bisection")

348
349
350
351

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.test.main()