data_test.py 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from collections import defaultdict
22
import hashlib
23
24
25
import os

import numpy as np
26
import scipy.stats
27
28
29
30
31
import tensorflow as tf

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
32
from official.recommendation import popen_helper
33
34
35
36
37
38
39


DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
40
EVAL_BATCH_SIZE = 4000
41
42
43
NUM_NEG = 4


44
45
46
47
48
END_TO_END_TRAIN_MD5 = "b218738e915e825d03939c5e305a2698"
END_TO_END_EVAL_MD5 = "d753d0f3186831466d6e218163a9501e"
FRESH_RANDOMNESS_MD5 = "63d0dff73c0e5f1048fbdc8c65021e22"


49
50
51
def mock_download(*args, **kwargs):
  return

52

53
54
class BaseTest(tf.test.TestCase):
  def setUp(self):
55
56
57
58
59
60
    # The forkpool used by data producers interacts badly with the threading
    # used by TestCase. Without this patch tests will hang, and no amount
    # of diligent closing and joining within the producer will prevent it.
    self._get_forkpool = popen_helper.get_forkpool
    popen_helper.get_forkpool = popen_helper.get_fauxpool

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.gfile.MakeDirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

78
    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
79
80
    self.seen_pairs = set()
    self.holdout = {}
81
    with tf.gfile.Open(self.rating_file, "w") as f:
82
83
84
85
86
87
88
89
90
91
92
93
94
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
95
96
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS)
97

98
99
100
  def tearDown(self):
    popen_helper.get_forkpool = self._get_forkpool

101
102
103
104
105
106
107
108
109
110
111
112
113
  def make_params(self, train_epochs=1):
    return {
        "train_epochs": train_epochs,
        "batches_per_step": 1,
        "use_seed": False,
        "batch_size": BATCH_SIZE,
        "eval_batch_size": EVAL_BATCH_SIZE,
        "num_neg": NUM_NEG,
        "match_mlperf": True,
        "use_tpu": False,
        "use_xla_for_gpu": False,
    }

114
115
  def test_preprocessing(self):
    # For the most part the necessary checks are performed within
116
117
118
119
120
    # _filter_index_sort()

    for match_mlperf in [True, False]:
      cache_path = os.path.join(self.temp_data_dir, "test_cache.pickle")
      data, valid_cache = data_preprocessing._filter_index_sort(
Taylor Robie's avatar
Taylor Robie committed
121
          self.rating_file, cache_path=cache_path)
122
123
124
125

      assert len(data[rconst.USER_MAP]) == NUM_USERS
      assert len(data[rconst.ITEM_MAP]) == NUM_ITEMS
      assert not valid_cache
126
127
128
129
130
131
132
133
134
135
136
137
138
139

  def drain_dataset(self, dataset, g):
    # type: (tf.data.Dataset, tf.Graph) -> list
    with self.test_session(graph=g) as sess:
      with g.as_default():
        batch = dataset.make_one_shot_iterator().get_next()
      output = []
      while True:
        try:
          output.append(sess.run(batch))
        except tf.errors.OutOfRangeError:
          break
    return output

140
  def _test_end_to_end(self, constructor_type):
141
142
    params = self.make_params(train_epochs=1)
    _, _, producer = data_preprocessing.instantiate_pipeline(
143
144
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
145
146
147
148

    producer.start()
    producer.join()
    assert producer._fatal_exception is None
149

150
151
152
153
154
155
    user_inv_map = {v: k for k, v in producer.user_map.items()}
    item_inv_map = {v: k for k, v in producer.item_map.items()}

    # ==========================================================================
    # == Training Data =========================================================
    # ==========================================================================
156
157
    g = tf.Graph()
    with g.as_default():
158
159
160
      input_fn = producer.make_input_fn(is_training=True)
      dataset = input_fn(params)

161
162
    first_epoch = self.drain_dataset(dataset=dataset, g=g)

163
    counts = defaultdict(int)
164
165
166
167
    train_examples = {
        True: set(),
        False: set(),
    }
168

169
    md5 = hashlib.md5()
170
    for features, labels in first_epoch:
171
      data_list = [
172
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
173
          features[rconst.VALID_POINT_MASK], labels]
Taylor Robie's avatar
Taylor Robie committed
174
175
176
      for i in data_list:
        md5.update(i.tobytes())

177
      for u, i, v, l in zip(*data_list):
178
179
        if not v:
          continue  # ignore padding
180

181
182
183
184
185
186
187
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
188
          self.assertEqual(i_raw, self.holdout[u_raw][1])
189
        train_examples[l].add((u_raw, i_raw))
190
191
        counts[(u_raw, i_raw)] += 1

192
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_TRAIN_MD5)
193

194
    num_positives_seen = len(train_examples[True])
195
    self.assertEqual(producer._train_pos_users.shape[0], num_positives_seen)
196
197
198

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    self.assertGreater(
        len(train_examples[False]) / NUM_NEG / num_positives_seen, 0.9)

    # This checks that the samples produced are independent by checking the
    # number of duplicate entries. If workers are not properly independent there
    # will be lots of repeated pairs.
    self.assertLess(np.mean(list(counts.values())), 1.1)

    # ==========================================================================
    # == Eval Data =============================================================
    # ==========================================================================
    with g.as_default():
      input_fn = producer.make_input_fn(is_training=False)
      dataset = input_fn(params)
213

214
    eval_data = self.drain_dataset(dataset=dataset, g=g)
215

216
    current_user = None
217
    md5 = hashlib.md5()
218
    for features in eval_data:
219
220
221
      data_list = [
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
          features[rconst.DUPLICATE_MASK]]
Taylor Robie's avatar
Taylor Robie committed
222
223
224
      for i in data_list:
        md5.update(i.tobytes())

225
      for idx, (u, i, d) in enumerate(zip(*data_list)):
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if current_user is None:
          current_user = u

        # Ensure that users appear in blocks, as the evaluation logic expects
        # this structure.
        self.assertEqual(u, current_user)

        # The structure of evaluation data is 999 negative examples followed
        # by the holdout positive.
        if not (idx + 1) % (rconst.NUM_EVAL_NEGATIVES + 1):
          # Check that the last element in each chunk is the holdout item.
          self.assertEqual(i_raw, self.holdout[u_raw][1])
          current_user = None

        elif i_raw == self.holdout[u_raw][1]:
          # Because the holdout item is not given to the negative generation
          # process, it can appear as a negative. In that case, it should be
          # masked out as a duplicate. (Since the true positive is placed at
          # the end and would therefore lose the tie.)
          assert d

        else:
          # Otherwise check that the other 999 points for a user are selected
          # from the negatives.
          assert (u_raw, i_raw) not in self.seen_pairs

254
255
256
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_EVAL_MD5)

  def _test_fresh_randomness(self, constructor_type):
257
258
259
    train_epochs = 5
    params = self.make_params(train_epochs=train_epochs)
    _, _, producer = data_preprocessing.instantiate_pipeline(
260
261
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

    producer.start()

    results = []
    g = tf.Graph()
    with g.as_default():
      for _ in range(train_epochs):
        input_fn = producer.make_input_fn(is_training=True)
        dataset = input_fn(params)
        results.extend(self.drain_dataset(dataset=dataset, g=g))

    producer.join()
    assert producer._fatal_exception is None

    positive_counts, negative_counts = defaultdict(int), defaultdict(int)
277
    md5 = hashlib.md5()
278
    for features, labels in results:
279
      data_list = [
280
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
281
          features[rconst.VALID_POINT_MASK], labels]
Taylor Robie's avatar
Taylor Robie committed
282
283
284
      for i in data_list:
        md5.update(i.tobytes())

285
      for u, i, v, l in zip(*data_list):
286
287
288
289
290
291
292
293
        if not v:
          continue  # ignore padding

        if l:
          positive_counts[(u, i)] += 1
        else:
          negative_counts[(u, i)] += 1

294
295
    self.assertRegexpMatches(md5.hexdigest(), FRESH_RANDOMNESS_MD5)

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    # The positive examples should appear exactly once each epoch
    self.assertAllEqual(list(positive_counts.values()),
                        [train_epochs for _ in positive_counts])

    # The threshold for the negatives is heuristic, but in general repeats are
    # expected, but should not appear too frequently.

    pair_cardinality = NUM_USERS * NUM_ITEMS
    neg_pair_cardinality = pair_cardinality - len(self.seen_pairs)

    # Approximation for the expectation number of times that a particular
    # negative will appear in a given epoch. Implicit in this calculation is the
    # treatment of all negative pairs as equally likely. Normally is not
    # necessarily reasonable; however the generation in self.setUp() will
    # approximate this behavior sufficiently for heuristic testing.
    e_sample = len(self.seen_pairs) * NUM_NEG / neg_pair_cardinality

    # The frequency of occurance of a given negative pair should follow an
    # approximately binomial distribution in the limit that the cardinality of
    # the negative pair set >> number of samples per epoch.
    approx_pdf = scipy.stats.binom.pmf(k=np.arange(train_epochs+1),
                                       n=train_epochs, p=e_sample)

    # Tally the actual observed counts.
    count_distribution = [0 for _ in range(train_epochs + 1)]
    for i in negative_counts.values():
      i = min([i, train_epochs])  # round down tail for simplicity.
      count_distribution[i] += 1
    count_distribution[0] = neg_pair_cardinality - sum(count_distribution[1:])

    # Check that the frequency of negative pairs is approximately binomial.
    for i in range(train_epochs + 1):
      if approx_pdf[i] < 0.05:
        continue  # Variance will be high at the tails.

      observed_fraction = count_distribution[i] / neg_pair_cardinality
      deviation = (2 * abs(observed_fraction - approx_pdf[i]) /
                   (observed_fraction + approx_pdf[i]))

      self.assertLess(deviation, 0.2)
336

337
338
339
340
341
342
343
344
345
346
347
348
  def test_end_to_end_materialized(self):
    self._test_end_to_end("materialized")

  def test_end_to_end_bisection(self):
    self._test_end_to_end("bisection")

  def test_fresh_randomness_materialized(self):
    self._test_fresh_randomness("materialized")

  def test_fresh_randomness_bisection(self):
    self._test_fresh_randomness("bisection")

349
350
351
352

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.test.main()