data_test.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from collections import defaultdict
22
import hashlib
23
24
import os

25
import mock
26
import numpy as np
27
import scipy.stats
28
29
30
31
32
import tensorflow as tf

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
33
from official.recommendation import popen_helper
34
from official.utils.misc import keras_utils
35
36
37
38
39
40
41


DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
42
EVAL_BATCH_SIZE = 4000
43
44
45
NUM_NEG = 4


46
47
48
49
50
END_TO_END_TRAIN_MD5 = "b218738e915e825d03939c5e305a2698"
END_TO_END_EVAL_MD5 = "d753d0f3186831466d6e218163a9501e"
FRESH_RANDOMNESS_MD5 = "63d0dff73c0e5f1048fbdc8c65021e22"


51
52
53
def mock_download(*args, **kwargs):
  return

54

55
56
57
58
# The forkpool used by data producers interacts badly with the threading
# used by TestCase. Without this patch tests will hang, and no amount
# of diligent closing and joining within the producer will prevent it.
@mock.patch.object(popen_helper, "get_forkpool", popen_helper.get_fauxpool)
59
class BaseTest(tf.test.TestCase):
60

61
  def setUp(self):
62
63
    if keras_utils.is_v2_0:
      tf.compat.v1.disable_eager_execution()
64
65
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
66
    tf.io.gfile.makedirs(ratings_folder)
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

81
    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
82
83
    self.seen_pairs = set()
    self.holdout = {}
84
    with tf.io.gfile.GFile(self.rating_file, "w") as f:
85
86
87
88
89
90
91
92
93
94
95
96
97
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
98
99
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS)
100

101
102
103
104
105
106
107
108
109
110
111
112
113
  def make_params(self, train_epochs=1):
    return {
        "train_epochs": train_epochs,
        "batches_per_step": 1,
        "use_seed": False,
        "batch_size": BATCH_SIZE,
        "eval_batch_size": EVAL_BATCH_SIZE,
        "num_neg": NUM_NEG,
        "match_mlperf": True,
        "use_tpu": False,
        "use_xla_for_gpu": False,
    }

114
115
  def test_preprocessing(self):
    # For the most part the necessary checks are performed within
116
117
    # _filter_index_sort()

118
119
120
121
122
123
    cache_path = os.path.join(self.temp_data_dir, "test_cache.pickle")
    data, valid_cache = data_preprocessing._filter_index_sort(
        self.rating_file, cache_path=cache_path)

    assert len(data[rconst.USER_MAP]) == NUM_USERS
    assert len(data[rconst.ITEM_MAP]) == NUM_ITEMS
124
125
126

  def drain_dataset(self, dataset, g):
    # type: (tf.data.Dataset, tf.Graph) -> list
127
    with self.session(graph=g) as sess:
128
129
130
131
132
133
134
135
136
137
      with g.as_default():
        batch = dataset.make_one_shot_iterator().get_next()
      output = []
      while True:
        try:
          output.append(sess.run(batch))
        except tf.errors.OutOfRangeError:
          break
    return output

138
  def _test_end_to_end(self, constructor_type):
139
140
    params = self.make_params(train_epochs=1)
    _, _, producer = data_preprocessing.instantiate_pipeline(
141
142
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
143
144
145
146

    producer.start()
    producer.join()
    assert producer._fatal_exception is None
147

148
149
150
151
152
153
    user_inv_map = {v: k for k, v in producer.user_map.items()}
    item_inv_map = {v: k for k, v in producer.item_map.items()}

    # ==========================================================================
    # == Training Data =========================================================
    # ==========================================================================
154
155
    g = tf.Graph()
    with g.as_default():
156
157
158
      input_fn = producer.make_input_fn(is_training=True)
      dataset = input_fn(params)

159
160
    first_epoch = self.drain_dataset(dataset=dataset, g=g)

161
    counts = defaultdict(int)
162
163
164
165
    train_examples = {
        True: set(),
        False: set(),
    }
166

167
    md5 = hashlib.md5()
168
    for features, labels in first_epoch:
169
      data_list = [
170
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
171
          features[rconst.VALID_POINT_MASK], labels]
Taylor Robie's avatar
Taylor Robie committed
172
173
174
      for i in data_list:
        md5.update(i.tobytes())

175
      for u, i, v, l in zip(*data_list):
176
177
        if not v:
          continue  # ignore padding
178

179
180
181
182
183
184
185
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
186
          self.assertEqual(i_raw, self.holdout[u_raw][1])
187
        train_examples[l].add((u_raw, i_raw))
188
189
        counts[(u_raw, i_raw)] += 1

190
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_TRAIN_MD5)
191

192
    num_positives_seen = len(train_examples[True])
193
    self.assertEqual(producer._train_pos_users.shape[0], num_positives_seen)
194
195
196

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    self.assertGreater(
        len(train_examples[False]) / NUM_NEG / num_positives_seen, 0.9)

    # This checks that the samples produced are independent by checking the
    # number of duplicate entries. If workers are not properly independent there
    # will be lots of repeated pairs.
    self.assertLess(np.mean(list(counts.values())), 1.1)

    # ==========================================================================
    # == Eval Data =============================================================
    # ==========================================================================
    with g.as_default():
      input_fn = producer.make_input_fn(is_training=False)
      dataset = input_fn(params)
211

212
    eval_data = self.drain_dataset(dataset=dataset, g=g)
213

214
    current_user = None
215
    md5 = hashlib.md5()
216
    for features in eval_data:
217
218
219
      data_list = [
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
          features[rconst.DUPLICATE_MASK]]
Taylor Robie's avatar
Taylor Robie committed
220
221
222
      for i in data_list:
        md5.update(i.tobytes())

223
      for idx, (u, i, d) in enumerate(zip(*data_list)):
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if current_user is None:
          current_user = u

        # Ensure that users appear in blocks, as the evaluation logic expects
        # this structure.
        self.assertEqual(u, current_user)

        # The structure of evaluation data is 999 negative examples followed
        # by the holdout positive.
        if not (idx + 1) % (rconst.NUM_EVAL_NEGATIVES + 1):
          # Check that the last element in each chunk is the holdout item.
          self.assertEqual(i_raw, self.holdout[u_raw][1])
          current_user = None

        elif i_raw == self.holdout[u_raw][1]:
          # Because the holdout item is not given to the negative generation
          # process, it can appear as a negative. In that case, it should be
          # masked out as a duplicate. (Since the true positive is placed at
          # the end and would therefore lose the tie.)
          assert d

        else:
          # Otherwise check that the other 999 points for a user are selected
          # from the negatives.
          assert (u_raw, i_raw) not in self.seen_pairs

252
253
254
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_EVAL_MD5)

  def _test_fresh_randomness(self, constructor_type):
255
256
257
    train_epochs = 5
    params = self.make_params(train_epochs=train_epochs)
    _, _, producer = data_preprocessing.instantiate_pipeline(
258
259
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

    producer.start()

    results = []
    g = tf.Graph()
    with g.as_default():
      for _ in range(train_epochs):
        input_fn = producer.make_input_fn(is_training=True)
        dataset = input_fn(params)
        results.extend(self.drain_dataset(dataset=dataset, g=g))

    producer.join()
    assert producer._fatal_exception is None

    positive_counts, negative_counts = defaultdict(int), defaultdict(int)
275
    md5 = hashlib.md5()
276
    for features, labels in results:
277
      data_list = [
278
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
279
          features[rconst.VALID_POINT_MASK], labels]
Taylor Robie's avatar
Taylor Robie committed
280
281
282
      for i in data_list:
        md5.update(i.tobytes())

283
      for u, i, v, l in zip(*data_list):
284
285
286
287
288
289
290
291
        if not v:
          continue  # ignore padding

        if l:
          positive_counts[(u, i)] += 1
        else:
          negative_counts[(u, i)] += 1

292
293
    self.assertRegexpMatches(md5.hexdigest(), FRESH_RANDOMNESS_MD5)

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    # The positive examples should appear exactly once each epoch
    self.assertAllEqual(list(positive_counts.values()),
                        [train_epochs for _ in positive_counts])

    # The threshold for the negatives is heuristic, but in general repeats are
    # expected, but should not appear too frequently.

    pair_cardinality = NUM_USERS * NUM_ITEMS
    neg_pair_cardinality = pair_cardinality - len(self.seen_pairs)

    # Approximation for the expectation number of times that a particular
    # negative will appear in a given epoch. Implicit in this calculation is the
    # treatment of all negative pairs as equally likely. Normally is not
    # necessarily reasonable; however the generation in self.setUp() will
    # approximate this behavior sufficiently for heuristic testing.
    e_sample = len(self.seen_pairs) * NUM_NEG / neg_pair_cardinality

    # The frequency of occurance of a given negative pair should follow an
    # approximately binomial distribution in the limit that the cardinality of
    # the negative pair set >> number of samples per epoch.
    approx_pdf = scipy.stats.binom.pmf(k=np.arange(train_epochs+1),
                                       n=train_epochs, p=e_sample)

    # Tally the actual observed counts.
    count_distribution = [0 for _ in range(train_epochs + 1)]
    for i in negative_counts.values():
      i = min([i, train_epochs])  # round down tail for simplicity.
      count_distribution[i] += 1
    count_distribution[0] = neg_pair_cardinality - sum(count_distribution[1:])

    # Check that the frequency of negative pairs is approximately binomial.
    for i in range(train_epochs + 1):
      if approx_pdf[i] < 0.05:
        continue  # Variance will be high at the tails.

      observed_fraction = count_distribution[i] / neg_pair_cardinality
      deviation = (2 * abs(observed_fraction - approx_pdf[i]) /
                   (observed_fraction + approx_pdf[i]))

      self.assertLess(deviation, 0.2)
334

Taylor Robie's avatar
Taylor Robie committed
335
336
  def test_end_to_end_materialized(self):
    self._test_end_to_end("materialized")
337

Taylor Robie's avatar
Taylor Robie committed
338
339
340
341
342
343
344
345
  def test_end_to_end_bisection(self):
    self._test_end_to_end("bisection")

  def test_fresh_randomness_materialized(self):
    self._test_fresh_randomness("materialized")

  def test_fresh_randomness_bisection(self):
    self._test_fresh_randomness("bisection")
346

347
348

if __name__ == "__main__":
Taylor Robie's avatar
Taylor Robie committed
349
  tf.test.main()