model_lib.py 48.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
27
28
import tf_slim as slim

29
from object_detection import eval_util
30
from object_detection import exporter as exporter_lib
31
from object_detection import inputs
32
from object_detection.builders import graph_rewriter_builder
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
38
from object_detection.utils import ops
39
40
41
42
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

43
44
45
46
47
48
49
50
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import learn as contrib_learn
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

51
52
53
54
55
56
57
58
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
59
60
61
62
63
64
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
65
    'detection_model_fn_base': model_builder.build,
66
67
68
}


69
70
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
71
  """Extracts groundtruth data from detection_model and prepares it for eval.
72
73
74
75

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
76
    max_number_of_boxes: Max number of groundtruth boxes.
77
78
79
80

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
81
82
83
84
85
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
86
        groundtruth)
87
88
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
89
90
91
      'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating
        the area (in the original absolute coordinates) of annotations (if
        provided in groundtruth).
92
93
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
94
95
      'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
        tensor of keypoints (if provided in groundtruth).
96
97
98
99
100
101
102
103
104
      'groundtruth_dp_num_points_list': [batch_size, num_boxes] int32 tensor
        with the number of DensePose points for each instance (if provided in
        groundtruth).
      'groundtruth_dp_part_ids_list': [batch_size, num_boxes,
        max_sampled_points] int32 tensor with the part ids for each DensePose
        sampled point (if provided in groundtruth).
      'groundtruth_dp_surface_coords_list': [batch_size, num_boxes,
        max_sampled_points, 4] containing the DensePose surface coordinates for
        each sampled point (if provided in groundtruth).
105
106
      'groundtruth_track_ids_list': [batch_size, num_boxes] int32 tensor
        with track ID for each instance (if provided in groundtruth).
107
108
109
110
      'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating
        group_of annotations (if provided in groundtruth).
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes.
111
112
113
114
115
116
      'groundtruth_verified_neg_classes': [batch_size, num_classes] float32
        K-hot representation of 1-indexed classes which were verified as not
        present in the image.
      'groundtruth_not_exhaustive_classes': [batch_size, num_classes] K-hot
        representation of 1-indexed classes which don't have all of their
        instances marked exhaustively.
117
118
119
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
120
121
122
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
123
124
125
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
126
127
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
128
  else:
129
130
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
131
132
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
133
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
134
135
136
137
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
138

139
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
140
141
142
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

143
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
144
145
146
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

147
148
149
150
151
152
153
154
  if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area):
    groundtruth[input_data_fields.groundtruth_area] = tf.stack(
        detection_model.groundtruth_lists(input_data_fields.groundtruth_area))

  if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints):
    groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoints))

155
156
157
158
159
160
161
162
163
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_depths):
    groundtruth[input_data_fields.groundtruth_keypoint_depths] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoint_depths))
    groundtruth[
        input_data_fields.groundtruth_keypoint_depth_weights] = tf.stack(
            detection_model.groundtruth_lists(
                fields.BoxListFields.keypoint_depth_weights))

164
165
166
167
168
169
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_visibilities):
    groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.keypoint_visibilities))

170
171
172
173
  if detection_model.groundtruth_has_field(fields.BoxListFields.group_of):
    groundtruth[input_data_fields.groundtruth_group_of] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.group_of))

174
  label_id_offset_paddings = tf.constant([[0, 0], [1, 0]])
175
  if detection_model.groundtruth_has_field(
176
      input_data_fields.groundtruth_verified_neg_classes):
177
178
179
180
    groundtruth[input_data_fields.groundtruth_verified_neg_classes] = tf.pad(
        tf.stack(detection_model.groundtruth_lists(
            input_data_fields.groundtruth_verified_neg_classes)),
        label_id_offset_paddings)
181
182
183
184

  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_not_exhaustive_classes):
    groundtruth[
185
186
187
188
        input_data_fields.groundtruth_not_exhaustive_classes] = tf.pad(
            tf.stack(detection_model.groundtruth_lists(
                input_data_fields.groundtruth_not_exhaustive_classes)),
            label_id_offset_paddings)
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_num_points):
    groundtruth[input_data_fields.groundtruth_dp_num_points] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_num_points))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_part_ids):
    groundtruth[input_data_fields.groundtruth_dp_part_ids] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_part_ids))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_surface_coords):
    groundtruth[input_data_fields.groundtruth_dp_surface_coords] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_surface_coords))
205
206
207
208
209

  if detection_model.groundtruth_has_field(fields.BoxListFields.track_ids):
    groundtruth[input_data_fields.groundtruth_track_ids] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.track_ids))

210
211
  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_labeled_classes):
212
213
214
215
216
    groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.pad(
        tf.stack(
            detection_model.groundtruth_lists(
                input_data_fields.groundtruth_labeled_classes)),
        label_id_offset_paddings)
217

218
219
  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
220
221
222
223
224
225
226
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
227
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
228
229
230
231
232
233

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

234
235
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
254
255
256
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
257
258
259
260
261
262
263
264
265
266
267
268
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
269
        fields.InputDataFields.groundtruth_instance_mask_weights,
270
271
272
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
273
274
        fields.InputDataFields.groundtruth_keypoint_depths,
        fields.InputDataFields.groundtruth_keypoint_depth_weights,
275
        fields.InputDataFields.groundtruth_keypoint_visibilities,
276
277
278
        fields.InputDataFields.groundtruth_dp_num_points,
        fields.InputDataFields.groundtruth_dp_part_ids,
        fields.InputDataFields.groundtruth_dp_surface_coords,
279
        fields.InputDataFields.groundtruth_track_ids,
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
300

301
302
303
304
305
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


306
def provide_groundtruth(model, labels, training_step=None):
307
308
309
310
311
312
313
314
315
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
316
317
    training_step: int, optional. The training step for the model. Useful
      for models which want to anneal loss weights.
318
319
320
321
322
323
324
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
325
326
327
328
  gt_mask_weights_list = None
  if fields.InputDataFields.groundtruth_instance_mask_weights in labels:
    gt_mask_weights_list = labels[
        fields.InputDataFields.groundtruth_instance_mask_weights]
329
330
331
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
332
333
334
335
336
337
338
  gt_keypoint_depths_list = None
  gt_keypoint_depth_weights_list = None
  if fields.InputDataFields.groundtruth_keypoint_depths in labels:
    gt_keypoint_depths_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depths])
    gt_keypoint_depth_weights_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depth_weights])
339
340
341
342
  gt_keypoint_visibilities_list = None
  if fields.InputDataFields.groundtruth_keypoint_visibilities in labels:
    gt_keypoint_visibilities_list = labels[
        fields.InputDataFields.groundtruth_keypoint_visibilities]
343
344
345
346
347
348
349
350
351
352
353
354
  gt_dp_num_points_list = None
  if fields.InputDataFields.groundtruth_dp_num_points in labels:
    gt_dp_num_points_list = labels[
        fields.InputDataFields.groundtruth_dp_num_points]
  gt_dp_part_ids_list = None
  if fields.InputDataFields.groundtruth_dp_part_ids in labels:
    gt_dp_part_ids_list = labels[
        fields.InputDataFields.groundtruth_dp_part_ids]
  gt_dp_surface_coords_list = None
  if fields.InputDataFields.groundtruth_dp_surface_coords in labels:
    gt_dp_surface_coords_list = labels[
        fields.InputDataFields.groundtruth_dp_surface_coords]
355
356
357
358
  gt_track_ids_list = None
  if fields.InputDataFields.groundtruth_track_ids in labels:
    gt_track_ids_list = labels[
        fields.InputDataFields.groundtruth_track_ids]
359
360
361
362
363
364
365
366
367
368
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
369
370
371
  gt_group_of_list = None
  if fields.InputDataFields.groundtruth_group_of in labels:
    gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of]
372
373
374
375
376
377
378
  gt_area_list = None
  if fields.InputDataFields.groundtruth_area in labels:
    gt_area_list = labels[fields.InputDataFields.groundtruth_area]
  gt_labeled_classes = None
  if fields.InputDataFields.groundtruth_labeled_classes in labels:
    gt_labeled_classes = labels[
        fields.InputDataFields.groundtruth_labeled_classes]
379
380
381
382
383
384
385
386
  gt_verified_neg_classes = None
  if fields.InputDataFields.groundtruth_verified_neg_classes in labels:
    gt_verified_neg_classes = labels[
        fields.InputDataFields.groundtruth_verified_neg_classes]
  gt_not_exhaustive_classes = None
  if fields.InputDataFields.groundtruth_not_exhaustive_classes in labels:
    gt_not_exhaustive_classes = labels[
        fields.InputDataFields.groundtruth_not_exhaustive_classes]
387
388
389
390
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
391
      groundtruth_labeled_classes=gt_labeled_classes,
392
      groundtruth_masks_list=gt_masks_list,
393
      groundtruth_mask_weights_list=gt_mask_weights_list,
394
      groundtruth_keypoints_list=gt_keypoints_list,
395
      groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list,
396
397
398
      groundtruth_dp_num_points_list=gt_dp_num_points_list,
      groundtruth_dp_part_ids_list=gt_dp_part_ids_list,
      groundtruth_dp_surface_coords_list=gt_dp_surface_coords_list,
399
      groundtruth_weights_list=gt_weights_list,
400
      groundtruth_is_crowd_list=gt_is_crowd_list,
401
      groundtruth_group_of_list=gt_group_of_list,
402
      groundtruth_area_list=gt_area_list,
403
404
      groundtruth_track_ids_list=gt_track_ids_list,
      groundtruth_verified_neg_classes=gt_verified_neg_classes,
405
406
      groundtruth_not_exhaustive_classes=gt_not_exhaustive_classes,
      groundtruth_keypoint_depths_list=gt_keypoint_depths_list,
407
408
      groundtruth_keypoint_depth_weights_list=gt_keypoint_depth_weights_list,
      training_step=training_step)
409
410


411
def create_model_fn(detection_model_fn, configs, hparams=None, use_tpu=False,
412
                    postprocess_on_cpu=False):
413
414
415
416
417
418
419
420
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
421
422
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
423
424
425
426
427
428

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
429
  eval_config = configs['eval_config']
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
448
449
450
451

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
452
453
454
    # Set policy for mixed-precision training with Keras-based models.
    if use_tpu and train_config.use_bfloat16:
      # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0.
455
      tf.keras.layers.enable_v2_dtype_behavior()
456
      tf2.keras.mixed_precision.set_global_policy('mixed_bfloat16')
457
458
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
459
460
461
462
463
464
465
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
466
467
468
469
470
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
471
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
472
473
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
474
475

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
pkulzc's avatar
pkulzc committed
476
      provide_groundtruth(detection_model, labels)
477
478

    preprocessed_images = features[fields.InputDataFields.image]
479
480
481

    side_inputs = detection_model.get_side_inputs(features)

482
    if use_tpu and train_config.use_bfloat16:
483
      with tf.tpu.bfloat16_scope():
484
485
        prediction_dict = detection_model.predict(
            preprocessed_images,
486
            features[fields.InputDataFields.true_image_shape], **side_inputs)
487
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
488
489
490
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
491
          features[fields.InputDataFields.true_image_shape], **side_inputs)
492
493
494
495

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

496
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
497
      if use_tpu and postprocess_on_cpu:
498
        detections = tf.tpu.outside_compilation(
499
500
501
502
503
504
505
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
506
507

    if mode == tf.estimator.ModeKeys.TRAIN:
508
509
      load_pretrained = hparams.load_pretrained if hparams else False
      if train_config.fine_tune_checkpoint and load_pretrained:
510
511
512
513
514
515
516
517
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
518
        asg_map = detection_model.restore_map(
519
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
520
521
522
523
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
524
525
                asg_map,
                train_config.fine_tune_checkpoint,
526
527
                include_global_step=False))
        if use_tpu:
528

529
530
531
532
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
533

534
535
536
537
538
539
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
      if (mode == tf.estimator.ModeKeys.EVAL and
          eval_config.use_dummy_loss_in_eval):
        total_loss = tf.constant(1.0)
        losses_dict = {'Loss/total_loss': total_loss}
      else:
        losses_dict = detection_model.loss(
            prediction_dict, features[fields.InputDataFields.true_image_shape])
        losses = [loss_tensor for loss_tensor in losses_dict.values()]
        if train_config.add_regularization_loss:
          regularization_losses = detection_model.regularization_losses()
          if use_tpu and train_config.use_bfloat16:
            regularization_losses = ops.bfloat16_to_float32_nested(
                regularization_losses)
          if regularization_losses:
            regularization_loss = tf.add_n(
                regularization_losses, name='regularization_loss')
            losses.append(regularization_loss)
            losses_dict['Loss/regularization_loss'] = regularization_loss
        total_loss = tf.add_n(losses, name='total_loss')
        losses_dict['Loss/total_loss'] = total_loss
560

561
562
563
564
565
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

566
567
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
568
569
570
571
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

572
    if mode == tf.estimator.ModeKeys.TRAIN:
573
      if use_tpu:
574
        training_optimizer = tf.tpu.CrossShardOptimizer(training_optimizer)
575
576
577

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
578
579
580
581
582
583
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
584
      trainable_variables = slim.filter_variables(
585
586
587
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
588
589
590
591
592
593
594
595
596

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
597
598
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
599
      train_op = slim.optimizers.optimize_loss(
600
601
602
603
604
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
605
          update_ops=detection_model.updates(),
606
607
608
609
610
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
611
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
612
613
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
614
              tf.estimator.export.PredictOutput(exported_output)
615
616
617
      }

    eval_metric_ops = None
618
    scaffold = None
619
    if mode == tf.estimator.ModeKeys.EVAL:
620
621
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
622
623
624
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
625
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
626
      if use_original_images:
627
628
629
630
631
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
632
633
      else:
        eval_images = features[fields.InputDataFields.image]
634
635
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
636

637
638
639
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
640
641
642
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
643
644
645
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
646

647
648
649
650
      if fields.InputDataFields.image_additional_channels in features:
        eval_dict[fields.InputDataFields.image_additional_channels] = features[
            fields.InputDataFields.image_additional_channels]

651
652
653
654
655
      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
656
      vis_metric_ops = None
657
      if not use_tpu and use_original_images:
658
659
660
        keypoint_edges = [
            (kp.start, kp.end) for kp in eval_config.keypoint_edge]

661
662
663
664
665
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
666
667
            use_normalized_coordinates=False,
            keypoint_edges=keypoint_edges or None)
668
669
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
670

671
672
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
673
          eval_config, list(category_index.values()), eval_dict)
674
675
676
677
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
678
679
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
680
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
681

682
683
684
685
686
687
688
689
690
691
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

692
693
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
694
      return tf.estimator.tpu.TPUEstimatorSpec(
695
696
697
698
699
700
701
702
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
703
704
705
706
707
708
709
710
711
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
712
713
714
715
716
717
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
718
719
          export_outputs=export_outputs,
          scaffold=scaffold)
720
721
722
723

  return model_fn


724
def create_estimator_and_inputs(run_config,
725
726
                                hparams=None,
                                pipeline_config_path=None,
727
                                config_override=None,
728
                                train_steps=None,
729
                                sample_1_of_n_eval_examples=1,
730
                                sample_1_of_n_eval_on_train_examples=1,
731
732
733
734
735
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
736
                                override_eval_num_epochs=True,
737
                                save_final_config=False,
738
739
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
740
741
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
742
743
744

  Args:
    run_config: A `RunConfig`.
745
    hparams: (optional) A `HParams`.
746
    pipeline_config_path: A path to a pipeline config file.
747
748
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
749
750
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
751
752
753
754
755
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
756
757
758
759
760
761
762
763
764
765
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

766
767
768
769
770
771
772
773
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
774
775
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
776
777
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
778
779
780
781
782
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
783
784
785
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
786
787
788
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
789
790
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
791
    'eval_on_train_input_fn': An evaluation-on-train input function.
792
793
794
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
795
  """
796
797
798
799
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
800
801
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
802
803
804
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
805
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
806

807
808
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
809
810
  kwargs.update({
      'train_steps': train_steps,
811
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
812
  })
pkulzc's avatar
pkulzc committed
813
814
815
816
  if sample_1_of_n_eval_examples >= 1:
    kwargs.update({
        'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
    })
817
818
819
820
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
821
  configs = merge_external_params_with_configs(
822
      configs, hparams, kwargs_dict=kwargs)
823
824
825
826
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
827
828
829
830
831
832
833
834
835
836
837
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
838

839
840
841
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
842
843

  detection_model_fn = functools.partial(
844
      detection_model_fn_base, model_config=model_config)
845

846
  # Create the input functions for TRAIN/EVAL/PREDICT.
847
  train_input_fn = create_train_input_fn(
848
849
850
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
851
852
853
854
855
856
857
858
  eval_input_fns = []
  for eval_input_config in eval_input_configs:
    eval_input_fns.append(
        create_eval_input_fn(
            eval_config=eval_config,
            eval_input_config=eval_input_config,
            model_config=model_config))

859
860
861
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
862
863
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
864
      eval_input_config=eval_on_train_input_config,
865
      model_config=model_config)
866
  predict_input_fn = create_predict_input_fn(
867
      model_config=model_config, predict_input_config=eval_input_configs[0])
868

869
  # Read export_to_tpu from hparams if not passed.
870
  if export_to_tpu is None and hparams is not None:
871
    export_to_tpu = hparams.get('export_to_tpu', False)
872
873
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
874
875
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
876
  if use_tpu_estimator:
877
    estimator = tf.estimator.tpu.TPUEstimator(
878
879
880
881
882
883
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
884
885
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
pkulzc's avatar
pkulzc committed
886
        params=params if params else {})
887
888
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
889

890
  # Write the as-run pipeline config to disk.
891
  if run_config.is_chief and save_final_config:
892
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
893
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
894

895
  return dict(
896
897
      estimator=estimator,
      train_input_fn=train_input_fn,
898
899
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
900
      eval_on_train_input_fn=eval_on_train_input_fn,
901
      predict_input_fn=predict_input_fn,
902
      train_steps=train_steps)
903
904
905


def create_train_and_eval_specs(train_input_fn,
906
                                eval_input_fns,
907
                                eval_on_train_input_fn,
908
909
910
911
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
912
                                eval_spec_names=None):
913
914
915
916
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
917
918
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
919
920
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
921
922
923
924
925
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
926
    eval_spec_names: A list of string names for each `EvalSpec`.
927
928

  Returns:
929
930
931
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
932
933
934
935
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

936
  if eval_spec_names is None:
937
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
938
939

  eval_specs = []
940
941
942
943
944
945
946
947
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
948
949
950
951
952
953
954
955
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
956
957
958
959

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
960
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
961
962

  return train_spec, eval_specs
963
964


965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def _evaluate_checkpoint(estimator,
                         input_fn,
                         checkpoint_path,
                         name,
                         max_retries=0):
  """Evaluates a checkpoint.

  Args:
    estimator: Estimator object to use for evaluation.
    input_fn: Input function to use for evaluation.
    checkpoint_path: Path of the checkpoint to evaluate.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.

  Returns:
    Estimator evaluation results.
  """
  always_retry = True if max_retries < 0 else False
  retries = 0
  while always_retry or retries <= max_retries:
    try:
      return estimator.evaluate(
          input_fn=input_fn,
          steps=None,
          checkpoint_path=checkpoint_path,
          name=name)
    except tf.errors.InvalidArgumentError as e:
      if always_retry or retries < max_retries:
        tf.logging.info('Retrying checkpoint evaluation after exception: %s', e)
        retries += 1
      else:
        raise e


1001
1002
1003
1004
1005
1006
def continuous_eval_generator(estimator,
                              model_dir,
                              input_fn,
                              train_steps,
                              name,
                              max_retries=0):
1007
1008
1009
1010
1011
1012
1013
1014
1015
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
1016
1017
1018
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
1019
1020
1021

  Yields:
    Pair of current step and eval_results.
1022
  """
1023

1024
1025
1026
1027
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

1028
  for ckpt in tf.train.checkpoints_iterator(
1029
1030
1031
1032
1033
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
1034
1035
1036
1037
1038
1039
      eval_results = _evaluate_checkpoint(
          estimator=estimator,
          input_fn=input_fn,
          checkpoint_path=ckpt,
          name=name,
          max_retries=max_retries)
1040
1041
1042
1043
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
1044
      yield (current_step, eval_results)
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
def continuous_eval(estimator,
                    model_dir,
                    input_fn,
                    train_steps,
                    name,
                    max_retries=0):
  """Performs continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
  """
  for current_step, eval_results in continuous_eval_generator(
      estimator, model_dir, input_fn, train_steps, name, max_retries):
    tf.logging.info('Step %s, Eval results: %s', current_step, eval_results)


1079
1080
1081
1082
1083
1084
1085
1086
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
1087

1088
1089
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
1125
      save_final_config=True,
1126
1127
1128
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
1129
  eval_input_fns = train_and_eval_dict['eval_input_fns']
1130
1131
1132
1133
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
1134
      contrib_learn.utils.saved_model_export_utils.make_export_strategy(
1135
1136
1137
          serving_input_fn=predict_input_fn)
  ]

1138
  return contrib_learn.Experiment(
1139
1140
      estimator=estimator,
      train_input_fn=train_input_fn,
1141
      eval_input_fn=eval_input_fns[0],
1142
      train_steps=train_steps,
1143
      eval_steps=None,
1144
      export_strategies=export_strategies,
1145
1146
      eval_delay_secs=120,
  )