"projects/MOCOV3/transform/linear_prob_transform.py" did not exist on "fd158e88e82c3fa848017c62a7eccb49a5c64f78"
model_lib.py 46.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
27
28
import tf_slim as slim

29
from object_detection import eval_util
30
from object_detection import exporter as exporter_lib
31
from object_detection import inputs
32
from object_detection.builders import graph_rewriter_builder
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
38
from object_detection.utils import ops
39
40
41
42
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

43
44
45
46
47
48
49
50
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import learn as contrib_learn
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

51
52
53
54
55
56
57
58
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
59
60
61
62
63
64
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
65
    'detection_model_fn_base': model_builder.build,
66
67
68
}


69
70
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
71
  """Extracts groundtruth data from detection_model and prepares it for eval.
72
73
74
75

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
76
    max_number_of_boxes: Max number of groundtruth boxes.
77
78
79
80

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
81
82
83
84
85
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
86
        groundtruth)
87
88
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
89
90
91
      'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating
        the area (in the original absolute coordinates) of annotations (if
        provided in groundtruth).
92
93
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
94
95
      'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
        tensor of keypoints (if provided in groundtruth).
96
97
98
99
100
101
102
103
104
      'groundtruth_dp_num_points_list': [batch_size, num_boxes] int32 tensor
        with the number of DensePose points for each instance (if provided in
        groundtruth).
      'groundtruth_dp_part_ids_list': [batch_size, num_boxes,
        max_sampled_points] int32 tensor with the part ids for each DensePose
        sampled point (if provided in groundtruth).
      'groundtruth_dp_surface_coords_list': [batch_size, num_boxes,
        max_sampled_points, 4] containing the DensePose surface coordinates for
        each sampled point (if provided in groundtruth).
105
106
      'groundtruth_track_ids_list': [batch_size, num_boxes] int32 tensor
        with track ID for each instance (if provided in groundtruth).
107
108
109
110
      'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating
        group_of annotations (if provided in groundtruth).
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes.
111
112
113
114
115
116
      'groundtruth_verified_neg_classes': [batch_size, num_classes] float32
        K-hot representation of 1-indexed classes which were verified as not
        present in the image.
      'groundtruth_not_exhaustive_classes': [batch_size, num_classes] K-hot
        representation of 1-indexed classes which don't have all of their
        instances marked exhaustively.
117
118
119
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
120
121
122
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
123
124
125
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
126
127
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
128
  else:
129
130
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
131
132
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
133
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
134
135
136
137
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
138

139
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
140
141
142
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

143
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
144
145
146
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

147
148
149
150
151
152
153
154
155
156
157
158
159
160
  if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area):
    groundtruth[input_data_fields.groundtruth_area] = tf.stack(
        detection_model.groundtruth_lists(input_data_fields.groundtruth_area))

  if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints):
    groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoints))

  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_visibilities):
    groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.keypoint_visibilities))

161
162
163
164
165
  if detection_model.groundtruth_has_field(fields.BoxListFields.group_of):
    groundtruth[input_data_fields.groundtruth_group_of] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.group_of))

  if detection_model.groundtruth_has_field(
166
167
168
169
170
171
172
173
174
175
176
      input_data_fields.groundtruth_verified_neg_classes):
    groundtruth[input_data_fields.groundtruth_verified_neg_classes] = tf.stack(
        detection_model.groundtruth_lists(
            input_data_fields.groundtruth_verified_neg_classes))

  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_not_exhaustive_classes):
    groundtruth[
        input_data_fields.groundtruth_not_exhaustive_classes] = tf.stack(
            detection_model.groundtruth_lists(
                input_data_fields.groundtruth_not_exhaustive_classes))
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_num_points):
    groundtruth[input_data_fields.groundtruth_dp_num_points] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_num_points))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_part_ids):
    groundtruth[input_data_fields.groundtruth_dp_part_ids] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_part_ids))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_surface_coords):
    groundtruth[input_data_fields.groundtruth_dp_surface_coords] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_surface_coords))
193
194
195
196
197

  if detection_model.groundtruth_has_field(fields.BoxListFields.track_ids):
    groundtruth[input_data_fields.groundtruth_track_ids] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.track_ids))

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_labeled_classes):
    labeled_classes_list = detection_model.groundtruth_lists(
        input_data_fields.groundtruth_labeled_classes)
    labeled_classes = [
        tf.where(x)[:, 0] + label_id_offset for x in labeled_classes_list
    ]
    if len(labeled_classes) > 1:
      num_classes = labeled_classes_list[0].shape[0]
      padded_labeled_classes = []
      for x in labeled_classes:
        padding = num_classes - tf.shape(x)[0]
        padded_labeled_classes.append(tf.pad(x, [[0, padding]]))
      groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.stack(
          padded_labeled_classes)
    else:
      groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.stack(
          labeled_classes)

217
218
  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
219
220
221
222
223
224
225
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
226
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
227
228
229
230
231
232

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

233
234
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
253
254
255
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
271
        fields.InputDataFields.groundtruth_keypoint_visibilities,
272
273
274
        fields.InputDataFields.groundtruth_dp_num_points,
        fields.InputDataFields.groundtruth_dp_part_ids,
        fields.InputDataFields.groundtruth_dp_surface_coords,
275
        fields.InputDataFields.groundtruth_track_ids,
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
296

297
298
299
300
301
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


pkulzc's avatar
pkulzc committed
302
def provide_groundtruth(model, labels):
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
322
323
324
325
  gt_keypoint_visibilities_list = None
  if fields.InputDataFields.groundtruth_keypoint_visibilities in labels:
    gt_keypoint_visibilities_list = labels[
        fields.InputDataFields.groundtruth_keypoint_visibilities]
326
327
328
329
330
331
332
333
334
335
336
337
  gt_dp_num_points_list = None
  if fields.InputDataFields.groundtruth_dp_num_points in labels:
    gt_dp_num_points_list = labels[
        fields.InputDataFields.groundtruth_dp_num_points]
  gt_dp_part_ids_list = None
  if fields.InputDataFields.groundtruth_dp_part_ids in labels:
    gt_dp_part_ids_list = labels[
        fields.InputDataFields.groundtruth_dp_part_ids]
  gt_dp_surface_coords_list = None
  if fields.InputDataFields.groundtruth_dp_surface_coords in labels:
    gt_dp_surface_coords_list = labels[
        fields.InputDataFields.groundtruth_dp_surface_coords]
338
339
340
341
  gt_track_ids_list = None
  if fields.InputDataFields.groundtruth_track_ids in labels:
    gt_track_ids_list = labels[
        fields.InputDataFields.groundtruth_track_ids]
342
343
344
345
346
347
348
349
350
351
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
352
353
354
  gt_group_of_list = None
  if fields.InputDataFields.groundtruth_group_of in labels:
    gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of]
355
356
357
358
359
360
361
  gt_area_list = None
  if fields.InputDataFields.groundtruth_area in labels:
    gt_area_list = labels[fields.InputDataFields.groundtruth_area]
  gt_labeled_classes = None
  if fields.InputDataFields.groundtruth_labeled_classes in labels:
    gt_labeled_classes = labels[
        fields.InputDataFields.groundtruth_labeled_classes]
362
363
364
365
366
367
368
369
  gt_verified_neg_classes = None
  if fields.InputDataFields.groundtruth_verified_neg_classes in labels:
    gt_verified_neg_classes = labels[
        fields.InputDataFields.groundtruth_verified_neg_classes]
  gt_not_exhaustive_classes = None
  if fields.InputDataFields.groundtruth_not_exhaustive_classes in labels:
    gt_not_exhaustive_classes = labels[
        fields.InputDataFields.groundtruth_not_exhaustive_classes]
370
371
372
373
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
374
      groundtruth_labeled_classes=gt_labeled_classes,
375
376
      groundtruth_masks_list=gt_masks_list,
      groundtruth_keypoints_list=gt_keypoints_list,
377
      groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list,
378
379
380
      groundtruth_dp_num_points_list=gt_dp_num_points_list,
      groundtruth_dp_part_ids_list=gt_dp_part_ids_list,
      groundtruth_dp_surface_coords_list=gt_dp_surface_coords_list,
381
      groundtruth_weights_list=gt_weights_list,
382
      groundtruth_is_crowd_list=gt_is_crowd_list,
383
      groundtruth_group_of_list=gt_group_of_list,
384
      groundtruth_area_list=gt_area_list,
385
386
387
      groundtruth_track_ids_list=gt_track_ids_list,
      groundtruth_verified_neg_classes=gt_verified_neg_classes,
      groundtruth_not_exhaustive_classes=gt_not_exhaustive_classes)
388
389


390
def create_model_fn(detection_model_fn, configs, hparams=None, use_tpu=False,
391
                    postprocess_on_cpu=False):
392
393
394
395
396
397
398
399
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
400
401
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
402
403
404
405
406
407

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
408
  eval_config = configs['eval_config']
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
427
428
429
430

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
431
432
433
434
435
    # Set policy for mixed-precision training with Keras-based models.
    if use_tpu and train_config.use_bfloat16:
      from tensorflow.python.keras.engine import base_layer_utils  # pylint: disable=g-import-not-at-top
      # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0.
      base_layer_utils.enable_v2_dtype_behavior()
436
      tf2.keras.mixed_precision.experimental.set_policy(
437
          'mixed_bfloat16')
438
439
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
440
441
442
443
444
445
446
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
447
448
449
450
451
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
452
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
453
454
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
455
456

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
pkulzc's avatar
pkulzc committed
457
      provide_groundtruth(detection_model, labels)
458
459

    preprocessed_images = features[fields.InputDataFields.image]
460
461
462

    side_inputs = detection_model.get_side_inputs(features)

463
    if use_tpu and train_config.use_bfloat16:
464
      with tf.tpu.bfloat16_scope():
465
466
        prediction_dict = detection_model.predict(
            preprocessed_images,
467
            features[fields.InputDataFields.true_image_shape], **side_inputs)
468
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
469
470
471
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
472
          features[fields.InputDataFields.true_image_shape], **side_inputs)
473
474
475
476

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

477
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
478
      if use_tpu and postprocess_on_cpu:
479
        detections = tf.tpu.outside_compilation(
480
481
482
483
484
485
486
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
487
488

    if mode == tf.estimator.ModeKeys.TRAIN:
489
490
      load_pretrained = hparams.load_pretrained if hparams else False
      if train_config.fine_tune_checkpoint and load_pretrained:
491
492
493
494
495
496
497
498
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
499
        asg_map = detection_model.restore_map(
500
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
501
502
503
504
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
505
506
                asg_map,
                train_config.fine_tune_checkpoint,
507
508
                include_global_step=False))
        if use_tpu:
509

510
511
512
513
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
514

515
516
517
518
519
520
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
      if (mode == tf.estimator.ModeKeys.EVAL and
          eval_config.use_dummy_loss_in_eval):
        total_loss = tf.constant(1.0)
        losses_dict = {'Loss/total_loss': total_loss}
      else:
        losses_dict = detection_model.loss(
            prediction_dict, features[fields.InputDataFields.true_image_shape])
        losses = [loss_tensor for loss_tensor in losses_dict.values()]
        if train_config.add_regularization_loss:
          regularization_losses = detection_model.regularization_losses()
          if use_tpu and train_config.use_bfloat16:
            regularization_losses = ops.bfloat16_to_float32_nested(
                regularization_losses)
          if regularization_losses:
            regularization_loss = tf.add_n(
                regularization_losses, name='regularization_loss')
            losses.append(regularization_loss)
            losses_dict['Loss/regularization_loss'] = regularization_loss
        total_loss = tf.add_n(losses, name='total_loss')
        losses_dict['Loss/total_loss'] = total_loss
541

542
543
544
545
546
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

547
548
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
549
550
551
552
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

553
    if mode == tf.estimator.ModeKeys.TRAIN:
554
      if use_tpu:
555
        training_optimizer = tf.tpu.CrossShardOptimizer(training_optimizer)
556
557
558

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
559
560
561
562
563
564
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
565
      trainable_variables = slim.filter_variables(
566
567
568
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
569
570
571
572
573
574
575
576
577

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
578
579
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
580
      train_op = slim.optimizers.optimize_loss(
581
582
583
584
585
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
586
          update_ops=detection_model.updates(),
587
588
589
590
591
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
592
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
593
594
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
595
              tf.estimator.export.PredictOutput(exported_output)
596
597
598
      }

    eval_metric_ops = None
599
    scaffold = None
600
    if mode == tf.estimator.ModeKeys.EVAL:
601
602
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
603
604
605
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
606
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
607
      if use_original_images:
608
609
610
611
612
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
613
614
      else:
        eval_images = features[fields.InputDataFields.image]
615
616
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
617

618
619
620
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
621
622
623
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
624
625
626
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
627

628
629
630
631
      if fields.InputDataFields.image_additional_channels in features:
        eval_dict[fields.InputDataFields.image_additional_channels] = features[
            fields.InputDataFields.image_additional_channels]

632
633
634
635
636
      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
637
      vis_metric_ops = None
638
      if not use_tpu and use_original_images:
639
640
641
        keypoint_edges = [
            (kp.start, kp.end) for kp in eval_config.keypoint_edge]

642
643
644
645
646
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
647
648
            use_normalized_coordinates=False,
            keypoint_edges=keypoint_edges or None)
649
650
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
651

652
653
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
654
          eval_config, list(category_index.values()), eval_dict)
655
656
657
658
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
659
660
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
661
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
662

663
664
665
666
667
668
669
670
671
672
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

673
674
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
675
      return tf.estimator.tpu.TPUEstimatorSpec(
676
677
678
679
680
681
682
683
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
684
685
686
687
688
689
690
691
692
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
693
694
695
696
697
698
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
699
700
          export_outputs=export_outputs,
          scaffold=scaffold)
701
702
703
704

  return model_fn


705
def create_estimator_and_inputs(run_config,
706
707
                                hparams=None,
                                pipeline_config_path=None,
708
                                config_override=None,
709
                                train_steps=None,
710
                                sample_1_of_n_eval_examples=1,
711
                                sample_1_of_n_eval_on_train_examples=1,
712
713
714
715
716
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
717
                                override_eval_num_epochs=True,
718
                                save_final_config=False,
719
720
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
721
722
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
723
724
725

  Args:
    run_config: A `RunConfig`.
726
    hparams: (optional) A `HParams`.
727
    pipeline_config_path: A path to a pipeline config file.
728
729
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
730
731
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
732
733
734
735
736
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
737
738
739
740
741
742
743
744
745
746
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

747
748
749
750
751
752
753
754
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
755
756
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
757
758
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
759
760
761
762
763
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
764
765
766
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
767
768
769
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
770
771
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
772
    'eval_on_train_input_fn': An evaluation-on-train input function.
773
774
775
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
776
  """
777
778
779
780
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
781
782
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
783
784
785
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
786
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
787

788
789
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
790
791
  kwargs.update({
      'train_steps': train_steps,
792
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
793
  })
pkulzc's avatar
pkulzc committed
794
795
796
797
  if sample_1_of_n_eval_examples >= 1:
    kwargs.update({
        'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
    })
798
799
800
801
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
802
  configs = merge_external_params_with_configs(
803
      configs, hparams, kwargs_dict=kwargs)
804
805
806
807
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
808
809
810
811
812
813
814
815
816
817
818
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
819

820
821
822
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
823
824

  detection_model_fn = functools.partial(
825
      detection_model_fn_base, model_config=model_config)
826

827
  # Create the input functions for TRAIN/EVAL/PREDICT.
828
  train_input_fn = create_train_input_fn(
829
830
831
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
832
833
834
835
836
837
838
839
840
  eval_input_fns = [
      create_eval_input_fn(
          eval_config=eval_config,
          eval_input_config=eval_input_config,
          model_config=model_config) for eval_input_config in eval_input_configs
  ]
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
841
842
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
843
      eval_input_config=eval_on_train_input_config,
844
      model_config=model_config)
845
  predict_input_fn = create_predict_input_fn(
846
      model_config=model_config, predict_input_config=eval_input_configs[0])
847

848
  # Read export_to_tpu from hparams if not passed.
849
  if export_to_tpu is None and hparams is not None:
850
    export_to_tpu = hparams.get('export_to_tpu', False)
851
852
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
853
854
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
855
  if use_tpu_estimator:
856
    estimator = tf.estimator.tpu.TPUEstimator(
857
858
859
860
861
862
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
863
864
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
pkulzc's avatar
pkulzc committed
865
        params=params if params else {})
866
867
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
868

869
  # Write the as-run pipeline config to disk.
870
  if run_config.is_chief and save_final_config:
871
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
872
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
873

874
  return dict(
875
876
      estimator=estimator,
      train_input_fn=train_input_fn,
877
878
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
879
      eval_on_train_input_fn=eval_on_train_input_fn,
880
      predict_input_fn=predict_input_fn,
881
      train_steps=train_steps)
882
883
884


def create_train_and_eval_specs(train_input_fn,
885
                                eval_input_fns,
886
                                eval_on_train_input_fn,
887
888
889
890
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
891
                                eval_spec_names=None):
892
893
894
895
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
896
897
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
898
899
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
900
901
902
903
904
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
905
    eval_spec_names: A list of string names for each `EvalSpec`.
906
907

  Returns:
908
909
910
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
911
912
913
914
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

915
  if eval_spec_names is None:
916
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
917
918

  eval_specs = []
919
920
921
922
923
924
925
926
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
927
928
929
930
931
932
933
934
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
935
936
937
938

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
939
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
940
941

  return train_spec, eval_specs
942
943


944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
def _evaluate_checkpoint(estimator,
                         input_fn,
                         checkpoint_path,
                         name,
                         max_retries=0):
  """Evaluates a checkpoint.

  Args:
    estimator: Estimator object to use for evaluation.
    input_fn: Input function to use for evaluation.
    checkpoint_path: Path of the checkpoint to evaluate.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.

  Returns:
    Estimator evaluation results.
  """
  always_retry = True if max_retries < 0 else False
  retries = 0
  while always_retry or retries <= max_retries:
    try:
      return estimator.evaluate(
          input_fn=input_fn,
          steps=None,
          checkpoint_path=checkpoint_path,
          name=name)
    except tf.errors.InvalidArgumentError as e:
      if always_retry or retries < max_retries:
        tf.logging.info('Retrying checkpoint evaluation after exception: %s', e)
        retries += 1
      else:
        raise e


def continuous_eval(estimator,
                    model_dir,
                    input_fn,
                    train_steps,
                    name,
                    max_retries=0):
986
987
988
989
990
991
992
993
994
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
995
996
997
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
998
  """
999

1000
1001
1002
1003
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

1004
  for ckpt in tf.train.checkpoints_iterator(
1005
1006
1007
1008
1009
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
1010
1011
1012
1013
1014
1015
      eval_results = _evaluate_checkpoint(
          estimator=estimator,
          input_fn=input_fn,
          checkpoint_path=ckpt,
          name=name,
          max_retries=max_retries)
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


1030
1031
1032
1033
1034
1035
1036
1037
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
1038

1039
1040
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
1041

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
1076
      save_final_config=True,
1077
1078
1079
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
1080
  eval_input_fns = train_and_eval_dict['eval_input_fns']
1081
1082
1083
1084
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
1085
      contrib_learn.utils.saved_model_export_utils.make_export_strategy(
1086
1087
1088
          serving_input_fn=predict_input_fn)
  ]

1089
  return contrib_learn.Experiment(
1090
1091
      estimator=estimator,
      train_input_fn=train_input_fn,
1092
      eval_input_fn=eval_input_fns[0],
1093
      train_steps=train_steps,
1094
      eval_steps=None,
1095
      export_strategies=export_strategies,
1096
1097
      eval_delay_secs=120,
  )