Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
6bccc202
Commit
6bccc202
authored
Jun 02, 2021
by
Ronny Votel
Committed by
TF Object Detection Team
Jun 02, 2021
Browse files
Plumbing groundtruth instance mask weights through the model codebase.
PiperOrigin-RevId: 377104676
parent
677aaa11
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
21 additions
and
2 deletions
+21
-2
research/object_detection/core/model.py
research/object_detection/core/model.py
+8
-2
research/object_detection/core/standard_fields.py
research/object_detection/core/standard_fields.py
+2
-0
research/object_detection/model_lib.py
research/object_detection/model_lib.py
+6
-0
research/object_detection/model_lib_v2.py
research/object_detection/model_lib_v2.py
+5
-0
No files found.
research/object_detection/core/model.py
View file @
6bccc202
...
@@ -101,7 +101,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
...
@@ -101,7 +101,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
Args:
Args:
field: a string key, options are
field: a string key, options are
fields.BoxListFields.{boxes,classes,masks,keypoints,
fields.BoxListFields.{boxes,classes,masks,
mask_weights,
keypoints,
keypoint_visibilities, densepose_*, track_ids,
keypoint_visibilities, densepose_*, track_ids,
temporal_offsets, track_match_flags}
temporal_offsets, track_match_flags}
fields.InputDataFields.is_annotated.
fields.InputDataFields.is_annotated.
...
@@ -123,7 +123,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
...
@@ -123,7 +123,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
Args:
Args:
field: a string key, options are
field: a string key, options are
fields.BoxListFields.{boxes,classes,masks,keypoints,
fields.BoxListFields.{boxes,classes,masks,
mask_weights,
keypoints,
keypoint_visibilities, densepose_*, track_ids} or
keypoint_visibilities, densepose_*, track_ids} or
fields.InputDataFields.is_annotated.
fields.InputDataFields.is_annotated.
...
@@ -299,6 +299,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
...
@@ -299,6 +299,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
groundtruth_boxes_list
,
groundtruth_boxes_list
,
groundtruth_classes_list
,
groundtruth_classes_list
,
groundtruth_masks_list
=
None
,
groundtruth_masks_list
=
None
,
groundtruth_mask_weights_list
=
None
,
groundtruth_keypoints_list
=
None
,
groundtruth_keypoints_list
=
None
,
groundtruth_keypoint_visibilities_list
=
None
,
groundtruth_keypoint_visibilities_list
=
None
,
groundtruth_dp_num_points_list
=
None
,
groundtruth_dp_num_points_list
=
None
,
...
@@ -334,6 +335,8 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
...
@@ -334,6 +335,8 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
masks with values in {0, 1}. If None, no masks are provided.
masks with values in {0, 1}. If None, no masks are provided.
Mask resolution `height_in`x`width_in` must agree with the resolution
Mask resolution `height_in`x`width_in` must agree with the resolution
of the input image tensor provided to the `preprocess` function.
of the input image tensor provided to the `preprocess` function.
groundtruth_mask_weights_list: a list of 1-D tf.float32 tensors of shape
[num_boxes] with weights for each instance mask.
groundtruth_keypoints_list: a list of 3-D tf.float32 tensors of
groundtruth_keypoints_list: a list of 3-D tf.float32 tensors of
shape [num_boxes, num_keypoints, 2] containing keypoints.
shape [num_boxes, num_keypoints, 2] containing keypoints.
Keypoints are assumed to be provided in normalized coordinates and
Keypoints are assumed to be provided in normalized coordinates and
...
@@ -399,6 +402,9 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
...
@@ -399,6 +402,9 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
if
groundtruth_masks_list
:
if
groundtruth_masks_list
:
self
.
_groundtruth_lists
[
self
.
_groundtruth_lists
[
fields
.
BoxListFields
.
masks
]
=
groundtruth_masks_list
fields
.
BoxListFields
.
masks
]
=
groundtruth_masks_list
if
groundtruth_mask_weights_list
:
self
.
_groundtruth_lists
[
fields
.
BoxListFields
.
mask_weights
]
=
groundtruth_mask_weights_list
if
groundtruth_keypoints_list
:
if
groundtruth_keypoints_list
:
self
.
_groundtruth_lists
[
self
.
_groundtruth_lists
[
fields
.
BoxListFields
.
keypoints
]
=
groundtruth_keypoints_list
fields
.
BoxListFields
.
keypoints
]
=
groundtruth_keypoints_list
...
...
research/object_detection/core/standard_fields.py
View file @
6bccc202
...
@@ -210,6 +210,7 @@ class BoxListFields(object):
...
@@ -210,6 +210,7 @@ class BoxListFields(object):
weights: sample weights per bounding box.
weights: sample weights per bounding box.
objectness: objectness score per bounding box.
objectness: objectness score per bounding box.
masks: masks per bounding box.
masks: masks per bounding box.
mask_weights: mask weights for each bounding box.
boundaries: boundaries per bounding box.
boundaries: boundaries per bounding box.
keypoints: keypoints per bounding box.
keypoints: keypoints per bounding box.
keypoint_visibilities: keypoint visibilities per bounding box.
keypoint_visibilities: keypoint visibilities per bounding box.
...
@@ -230,6 +231,7 @@ class BoxListFields(object):
...
@@ -230,6 +231,7 @@ class BoxListFields(object):
confidences
=
'confidences'
confidences
=
'confidences'
objectness
=
'objectness'
objectness
=
'objectness'
masks
=
'masks'
masks
=
'masks'
mask_weights
=
'mask_weights'
boundaries
=
'boundaries'
boundaries
=
'boundaries'
keypoints
=
'keypoints'
keypoints
=
'keypoints'
keypoint_visibilities
=
'keypoint_visibilities'
keypoint_visibilities
=
'keypoint_visibilities'
...
...
research/object_detection/model_lib.py
View file @
6bccc202
...
@@ -266,6 +266,7 @@ def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
...
@@ -266,6 +266,7 @@ def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
# dimension. This list has to be kept in sync with InputDataFields in
# dimension. This list has to be kept in sync with InputDataFields in
# standard_fields.py.
# standard_fields.py.
fields
.
InputDataFields
.
groundtruth_instance_masks
,
fields
.
InputDataFields
.
groundtruth_instance_masks
,
fields
.
InputDataFields
.
groundtruth_instance_mask_weights
,
fields
.
InputDataFields
.
groundtruth_classes
,
fields
.
InputDataFields
.
groundtruth_classes
,
fields
.
InputDataFields
.
groundtruth_boxes
,
fields
.
InputDataFields
.
groundtruth_boxes
,
fields
.
InputDataFields
.
groundtruth_keypoints
,
fields
.
InputDataFields
.
groundtruth_keypoints
,
...
@@ -319,6 +320,10 @@ def provide_groundtruth(model, labels):
...
@@ -319,6 +320,10 @@ def provide_groundtruth(model, labels):
if
fields
.
InputDataFields
.
groundtruth_instance_masks
in
labels
:
if
fields
.
InputDataFields
.
groundtruth_instance_masks
in
labels
:
gt_masks_list
=
labels
[
gt_masks_list
=
labels
[
fields
.
InputDataFields
.
groundtruth_instance_masks
]
fields
.
InputDataFields
.
groundtruth_instance_masks
]
gt_mask_weights_list
=
None
if
fields
.
InputDataFields
.
groundtruth_instance_mask_weights
in
labels
:
gt_mask_weights_list
=
labels
[
fields
.
InputDataFields
.
groundtruth_instance_mask_weights
]
gt_keypoints_list
=
None
gt_keypoints_list
=
None
if
fields
.
InputDataFields
.
groundtruth_keypoints
in
labels
:
if
fields
.
InputDataFields
.
groundtruth_keypoints
in
labels
:
gt_keypoints_list
=
labels
[
fields
.
InputDataFields
.
groundtruth_keypoints
]
gt_keypoints_list
=
labels
[
fields
.
InputDataFields
.
groundtruth_keypoints
]
...
@@ -383,6 +388,7 @@ def provide_groundtruth(model, labels):
...
@@ -383,6 +388,7 @@ def provide_groundtruth(model, labels):
groundtruth_confidences_list
=
gt_confidences_list
,
groundtruth_confidences_list
=
gt_confidences_list
,
groundtruth_labeled_classes
=
gt_labeled_classes
,
groundtruth_labeled_classes
=
gt_labeled_classes
,
groundtruth_masks_list
=
gt_masks_list
,
groundtruth_masks_list
=
gt_masks_list
,
groundtruth_mask_weights_list
=
gt_mask_weights_list
,
groundtruth_keypoints_list
=
gt_keypoints_list
,
groundtruth_keypoints_list
=
gt_keypoints_list
,
groundtruth_keypoint_visibilities_list
=
gt_keypoint_visibilities_list
,
groundtruth_keypoint_visibilities_list
=
gt_keypoint_visibilities_list
,
groundtruth_dp_num_points_list
=
gt_dp_num_points_list
,
groundtruth_dp_num_points_list
=
gt_dp_num_points_list
,
...
...
research/object_detection/model_lib_v2.py
View file @
6bccc202
...
@@ -87,6 +87,8 @@ def _compute_losses_and_predictions_dicts(
...
@@ -87,6 +87,8 @@ def _compute_losses_and_predictions_dicts(
labels[fields.InputDataFields.groundtruth_instance_masks] is a
labels[fields.InputDataFields.groundtruth_instance_masks] is a
float32 tensor containing only binary values, which represent
float32 tensor containing only binary values, which represent
instance masks for objects.
instance masks for objects.
labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a
float32 tensor containing weights for the instance masks.
labels[fields.InputDataFields.groundtruth_keypoints] is a
labels[fields.InputDataFields.groundtruth_keypoints] is a
float32 tensor containing keypoints for each box.
float32 tensor containing keypoints for each box.
labels[fields.InputDataFields.groundtruth_dp_num_points] is an int32
labels[fields.InputDataFields.groundtruth_dp_num_points] is an int32
...
@@ -237,6 +239,9 @@ def eager_train_step(detection_model,
...
@@ -237,6 +239,9 @@ def eager_train_step(detection_model,
labels[fields.InputDataFields.groundtruth_instance_masks] is a
labels[fields.InputDataFields.groundtruth_instance_masks] is a
[batch_size, num_boxes, H, W] float32 tensor containing only binary
[batch_size, num_boxes, H, W] float32 tensor containing only binary
values, which represent instance masks for objects.
values, which represent instance masks for objects.
labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a
[batch_size, num_boxes] float32 tensor containing weights for the
instance masks.
labels[fields.InputDataFields.groundtruth_keypoints] is a
labels[fields.InputDataFields.groundtruth_keypoints] is a
[batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
[batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
keypoints for each box.
keypoints for each box.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment