model_lib.py 48.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
27
28
import tf_slim as slim

29
from object_detection import eval_util
30
from object_detection import exporter as exporter_lib
31
from object_detection import inputs
32
from object_detection.builders import graph_rewriter_builder
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
38
from object_detection.utils import ops
39
40
41
42
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

43
44
45
46
47
48
49
50
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import learn as contrib_learn
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

51
52
53
54
55
56
57
58
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
59
60
61
62
63
64
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
65
    'detection_model_fn_base': model_builder.build,
66
67
68
}


69
70
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
71
  """Extracts groundtruth data from detection_model and prepares it for eval.
72
73
74
75

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
76
    max_number_of_boxes: Max number of groundtruth boxes.
77
78
79
80

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
81
82
83
84
85
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
86
        groundtruth)
87
88
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
89
90
91
      'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating
        the area (in the original absolute coordinates) of annotations (if
        provided in groundtruth).
92
93
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
94
95
      'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
        tensor of keypoints (if provided in groundtruth).
96
97
98
99
100
101
102
103
104
      'groundtruth_dp_num_points_list': [batch_size, num_boxes] int32 tensor
        with the number of DensePose points for each instance (if provided in
        groundtruth).
      'groundtruth_dp_part_ids_list': [batch_size, num_boxes,
        max_sampled_points] int32 tensor with the part ids for each DensePose
        sampled point (if provided in groundtruth).
      'groundtruth_dp_surface_coords_list': [batch_size, num_boxes,
        max_sampled_points, 4] containing the DensePose surface coordinates for
        each sampled point (if provided in groundtruth).
105
106
      'groundtruth_track_ids_list': [batch_size, num_boxes] int32 tensor
        with track ID for each instance (if provided in groundtruth).
107
108
109
110
      'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating
        group_of annotations (if provided in groundtruth).
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes.
111
112
113
114
115
116
      'groundtruth_verified_neg_classes': [batch_size, num_classes] float32
        K-hot representation of 1-indexed classes which were verified as not
        present in the image.
      'groundtruth_not_exhaustive_classes': [batch_size, num_classes] K-hot
        representation of 1-indexed classes which don't have all of their
        instances marked exhaustively.
117
118
119
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
120
121
122
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
123
124
125
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
126
127
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
128
  else:
129
130
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
131
132
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
133
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
134
135
136
137
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
138

139
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
140
141
142
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

143
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
144
145
146
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

147
148
149
150
151
152
153
154
  if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area):
    groundtruth[input_data_fields.groundtruth_area] = tf.stack(
        detection_model.groundtruth_lists(input_data_fields.groundtruth_area))

  if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints):
    groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoints))

155
156
157
158
159
160
161
162
163
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_depths):
    groundtruth[input_data_fields.groundtruth_keypoint_depths] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoint_depths))
    groundtruth[
        input_data_fields.groundtruth_keypoint_depth_weights] = tf.stack(
            detection_model.groundtruth_lists(
                fields.BoxListFields.keypoint_depth_weights))

164
165
166
167
168
169
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_visibilities):
    groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.keypoint_visibilities))

170
171
172
173
  if detection_model.groundtruth_has_field(fields.BoxListFields.group_of):
    groundtruth[input_data_fields.groundtruth_group_of] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.group_of))

174
  label_id_offset_paddings = tf.constant([[0, 0], [1, 0]])
175
  if detection_model.groundtruth_has_field(
176
      input_data_fields.groundtruth_verified_neg_classes):
177
178
179
180
    groundtruth[input_data_fields.groundtruth_verified_neg_classes] = tf.pad(
        tf.stack(detection_model.groundtruth_lists(
            input_data_fields.groundtruth_verified_neg_classes)),
        label_id_offset_paddings)
181
182
183
184

  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_not_exhaustive_classes):
    groundtruth[
185
186
187
188
        input_data_fields.groundtruth_not_exhaustive_classes] = tf.pad(
            tf.stack(detection_model.groundtruth_lists(
                input_data_fields.groundtruth_not_exhaustive_classes)),
            label_id_offset_paddings)
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_num_points):
    groundtruth[input_data_fields.groundtruth_dp_num_points] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_num_points))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_part_ids):
    groundtruth[input_data_fields.groundtruth_dp_part_ids] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_part_ids))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_surface_coords):
    groundtruth[input_data_fields.groundtruth_dp_surface_coords] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_surface_coords))
205
206
207
208
209

  if detection_model.groundtruth_has_field(fields.BoxListFields.track_ids):
    groundtruth[input_data_fields.groundtruth_track_ids] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.track_ids))

210
211
  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_labeled_classes):
212
213
214
215
216
    groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.pad(
        tf.stack(
            detection_model.groundtruth_lists(
                input_data_fields.groundtruth_labeled_classes)),
        label_id_offset_paddings)
217

218
219
  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
220
221
222
223
224
225
226
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
227
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
228
229
230
231
232
233

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

234
235
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
254
255
256
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
272
273
        fields.InputDataFields.groundtruth_keypoint_depths,
        fields.InputDataFields.groundtruth_keypoint_depth_weights,
274
        fields.InputDataFields.groundtruth_keypoint_visibilities,
275
276
277
        fields.InputDataFields.groundtruth_dp_num_points,
        fields.InputDataFields.groundtruth_dp_part_ids,
        fields.InputDataFields.groundtruth_dp_surface_coords,
278
        fields.InputDataFields.groundtruth_track_ids,
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
299

300
301
302
303
304
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


pkulzc's avatar
pkulzc committed
305
def provide_groundtruth(model, labels):
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
325
326
327
328
329
330
331
  gt_keypoint_depths_list = None
  gt_keypoint_depth_weights_list = None
  if fields.InputDataFields.groundtruth_keypoint_depths in labels:
    gt_keypoint_depths_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depths])
    gt_keypoint_depth_weights_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depth_weights])
332
333
334
335
  gt_keypoint_visibilities_list = None
  if fields.InputDataFields.groundtruth_keypoint_visibilities in labels:
    gt_keypoint_visibilities_list = labels[
        fields.InputDataFields.groundtruth_keypoint_visibilities]
336
337
338
339
340
341
342
343
344
345
346
347
  gt_dp_num_points_list = None
  if fields.InputDataFields.groundtruth_dp_num_points in labels:
    gt_dp_num_points_list = labels[
        fields.InputDataFields.groundtruth_dp_num_points]
  gt_dp_part_ids_list = None
  if fields.InputDataFields.groundtruth_dp_part_ids in labels:
    gt_dp_part_ids_list = labels[
        fields.InputDataFields.groundtruth_dp_part_ids]
  gt_dp_surface_coords_list = None
  if fields.InputDataFields.groundtruth_dp_surface_coords in labels:
    gt_dp_surface_coords_list = labels[
        fields.InputDataFields.groundtruth_dp_surface_coords]
348
349
350
351
  gt_track_ids_list = None
  if fields.InputDataFields.groundtruth_track_ids in labels:
    gt_track_ids_list = labels[
        fields.InputDataFields.groundtruth_track_ids]
352
353
354
355
356
357
358
359
360
361
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
362
363
364
  gt_group_of_list = None
  if fields.InputDataFields.groundtruth_group_of in labels:
    gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of]
365
366
367
368
369
370
371
  gt_area_list = None
  if fields.InputDataFields.groundtruth_area in labels:
    gt_area_list = labels[fields.InputDataFields.groundtruth_area]
  gt_labeled_classes = None
  if fields.InputDataFields.groundtruth_labeled_classes in labels:
    gt_labeled_classes = labels[
        fields.InputDataFields.groundtruth_labeled_classes]
372
373
374
375
376
377
378
379
  gt_verified_neg_classes = None
  if fields.InputDataFields.groundtruth_verified_neg_classes in labels:
    gt_verified_neg_classes = labels[
        fields.InputDataFields.groundtruth_verified_neg_classes]
  gt_not_exhaustive_classes = None
  if fields.InputDataFields.groundtruth_not_exhaustive_classes in labels:
    gt_not_exhaustive_classes = labels[
        fields.InputDataFields.groundtruth_not_exhaustive_classes]
380
381
382
383
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
384
      groundtruth_labeled_classes=gt_labeled_classes,
385
386
      groundtruth_masks_list=gt_masks_list,
      groundtruth_keypoints_list=gt_keypoints_list,
387
      groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list,
388
389
390
      groundtruth_dp_num_points_list=gt_dp_num_points_list,
      groundtruth_dp_part_ids_list=gt_dp_part_ids_list,
      groundtruth_dp_surface_coords_list=gt_dp_surface_coords_list,
391
      groundtruth_weights_list=gt_weights_list,
392
      groundtruth_is_crowd_list=gt_is_crowd_list,
393
      groundtruth_group_of_list=gt_group_of_list,
394
      groundtruth_area_list=gt_area_list,
395
396
      groundtruth_track_ids_list=gt_track_ids_list,
      groundtruth_verified_neg_classes=gt_verified_neg_classes,
397
398
399
      groundtruth_not_exhaustive_classes=gt_not_exhaustive_classes,
      groundtruth_keypoint_depths_list=gt_keypoint_depths_list,
      groundtruth_keypoint_depth_weights_list=gt_keypoint_depth_weights_list)
400
401


402
def create_model_fn(detection_model_fn, configs, hparams=None, use_tpu=False,
403
                    postprocess_on_cpu=False):
404
405
406
407
408
409
410
411
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
412
413
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
414
415
416
417
418
419

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
420
  eval_config = configs['eval_config']
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
439
440
441
442

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
443
444
445
446
447
    # Set policy for mixed-precision training with Keras-based models.
    if use_tpu and train_config.use_bfloat16:
      from tensorflow.python.keras.engine import base_layer_utils  # pylint: disable=g-import-not-at-top
      # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0.
      base_layer_utils.enable_v2_dtype_behavior()
448
      tf2.keras.mixed_precision.set_global_policy('mixed_bfloat16')
449
450
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
451
452
453
454
455
456
457
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
458
459
460
461
462
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
463
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
464
465
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
466
467

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
pkulzc's avatar
pkulzc committed
468
      provide_groundtruth(detection_model, labels)
469
470

    preprocessed_images = features[fields.InputDataFields.image]
471
472
473

    side_inputs = detection_model.get_side_inputs(features)

474
    if use_tpu and train_config.use_bfloat16:
475
      with tf.tpu.bfloat16_scope():
476
477
        prediction_dict = detection_model.predict(
            preprocessed_images,
478
            features[fields.InputDataFields.true_image_shape], **side_inputs)
479
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
480
481
482
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
483
          features[fields.InputDataFields.true_image_shape], **side_inputs)
484
485
486
487

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

488
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
489
      if use_tpu and postprocess_on_cpu:
490
        detections = tf.tpu.outside_compilation(
491
492
493
494
495
496
497
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
498
499

    if mode == tf.estimator.ModeKeys.TRAIN:
500
501
      load_pretrained = hparams.load_pretrained if hparams else False
      if train_config.fine_tune_checkpoint and load_pretrained:
502
503
504
505
506
507
508
509
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
510
        asg_map = detection_model.restore_map(
511
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
512
513
514
515
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
516
517
                asg_map,
                train_config.fine_tune_checkpoint,
518
519
                include_global_step=False))
        if use_tpu:
520

521
522
523
524
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
525

526
527
528
529
530
531
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
      if (mode == tf.estimator.ModeKeys.EVAL and
          eval_config.use_dummy_loss_in_eval):
        total_loss = tf.constant(1.0)
        losses_dict = {'Loss/total_loss': total_loss}
      else:
        losses_dict = detection_model.loss(
            prediction_dict, features[fields.InputDataFields.true_image_shape])
        losses = [loss_tensor for loss_tensor in losses_dict.values()]
        if train_config.add_regularization_loss:
          regularization_losses = detection_model.regularization_losses()
          if use_tpu and train_config.use_bfloat16:
            regularization_losses = ops.bfloat16_to_float32_nested(
                regularization_losses)
          if regularization_losses:
            regularization_loss = tf.add_n(
                regularization_losses, name='regularization_loss')
            losses.append(regularization_loss)
            losses_dict['Loss/regularization_loss'] = regularization_loss
        total_loss = tf.add_n(losses, name='total_loss')
        losses_dict['Loss/total_loss'] = total_loss
552

553
554
555
556
557
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

558
559
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
560
561
562
563
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

564
    if mode == tf.estimator.ModeKeys.TRAIN:
565
      if use_tpu:
566
        training_optimizer = tf.tpu.CrossShardOptimizer(training_optimizer)
567
568
569

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
570
571
572
573
574
575
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
576
      trainable_variables = slim.filter_variables(
577
578
579
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
580
581
582
583
584
585
586
587
588

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
589
590
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
591
      train_op = slim.optimizers.optimize_loss(
592
593
594
595
596
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
597
          update_ops=detection_model.updates(),
598
599
600
601
602
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
603
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
604
605
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
606
              tf.estimator.export.PredictOutput(exported_output)
607
608
609
      }

    eval_metric_ops = None
610
    scaffold = None
611
    if mode == tf.estimator.ModeKeys.EVAL:
612
613
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
614
615
616
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
617
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
618
      if use_original_images:
619
620
621
622
623
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
624
625
      else:
        eval_images = features[fields.InputDataFields.image]
626
627
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
628

629
630
631
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
632
633
634
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
635
636
637
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
638

639
640
641
642
      if fields.InputDataFields.image_additional_channels in features:
        eval_dict[fields.InputDataFields.image_additional_channels] = features[
            fields.InputDataFields.image_additional_channels]

643
644
645
646
647
      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
648
      vis_metric_ops = None
649
      if not use_tpu and use_original_images:
650
651
652
        keypoint_edges = [
            (kp.start, kp.end) for kp in eval_config.keypoint_edge]

653
654
655
656
657
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
658
659
            use_normalized_coordinates=False,
            keypoint_edges=keypoint_edges or None)
660
661
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
662

663
664
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
665
          eval_config, list(category_index.values()), eval_dict)
666
667
668
669
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
670
671
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
672
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
673

674
675
676
677
678
679
680
681
682
683
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

684
685
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
686
      return tf.estimator.tpu.TPUEstimatorSpec(
687
688
689
690
691
692
693
694
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
695
696
697
698
699
700
701
702
703
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
704
705
706
707
708
709
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
710
711
          export_outputs=export_outputs,
          scaffold=scaffold)
712
713
714
715

  return model_fn


716
def create_estimator_and_inputs(run_config,
717
718
                                hparams=None,
                                pipeline_config_path=None,
719
                                config_override=None,
720
                                train_steps=None,
721
                                sample_1_of_n_eval_examples=1,
722
                                sample_1_of_n_eval_on_train_examples=1,
723
724
725
726
727
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
728
                                override_eval_num_epochs=True,
729
                                save_final_config=False,
730
731
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
732
733
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
734
735
736

  Args:
    run_config: A `RunConfig`.
737
    hparams: (optional) A `HParams`.
738
    pipeline_config_path: A path to a pipeline config file.
739
740
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
741
742
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
743
744
745
746
747
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
748
749
750
751
752
753
754
755
756
757
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

758
759
760
761
762
763
764
765
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
766
767
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
768
769
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
770
771
772
773
774
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
775
776
777
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
778
779
780
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
781
782
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
783
    'eval_on_train_input_fn': An evaluation-on-train input function.
784
785
786
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
787
  """
788
789
790
791
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
792
793
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
794
795
796
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
797
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
798

799
800
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
801
802
  kwargs.update({
      'train_steps': train_steps,
803
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
804
  })
pkulzc's avatar
pkulzc committed
805
806
807
808
  if sample_1_of_n_eval_examples >= 1:
    kwargs.update({
        'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
    })
809
810
811
812
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
813
  configs = merge_external_params_with_configs(
814
      configs, hparams, kwargs_dict=kwargs)
815
816
817
818
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
819
820
821
822
823
824
825
826
827
828
829
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
830

831
832
833
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
834
835

  detection_model_fn = functools.partial(
836
      detection_model_fn_base, model_config=model_config)
837

838
  # Create the input functions for TRAIN/EVAL/PREDICT.
839
  train_input_fn = create_train_input_fn(
840
841
842
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
843
844
845
846
847
848
849
850
  eval_input_fns = []
  for eval_input_config in eval_input_configs:
    eval_input_fns.append(
        create_eval_input_fn(
            eval_config=eval_config,
            eval_input_config=eval_input_config,
            model_config=model_config))

851
852
853
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
854
855
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
856
      eval_input_config=eval_on_train_input_config,
857
      model_config=model_config)
858
  predict_input_fn = create_predict_input_fn(
859
      model_config=model_config, predict_input_config=eval_input_configs[0])
860

861
  # Read export_to_tpu from hparams if not passed.
862
  if export_to_tpu is None and hparams is not None:
863
    export_to_tpu = hparams.get('export_to_tpu', False)
864
865
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
866
867
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
868
  if use_tpu_estimator:
869
    estimator = tf.estimator.tpu.TPUEstimator(
870
871
872
873
874
875
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
876
877
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
pkulzc's avatar
pkulzc committed
878
        params=params if params else {})
879
880
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
881

882
  # Write the as-run pipeline config to disk.
883
  if run_config.is_chief and save_final_config:
884
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
885
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
886

887
  return dict(
888
889
      estimator=estimator,
      train_input_fn=train_input_fn,
890
891
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
892
      eval_on_train_input_fn=eval_on_train_input_fn,
893
      predict_input_fn=predict_input_fn,
894
      train_steps=train_steps)
895
896
897


def create_train_and_eval_specs(train_input_fn,
898
                                eval_input_fns,
899
                                eval_on_train_input_fn,
900
901
902
903
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
904
                                eval_spec_names=None):
905
906
907
908
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
909
910
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
911
912
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
913
914
915
916
917
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
918
    eval_spec_names: A list of string names for each `EvalSpec`.
919
920

  Returns:
921
922
923
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
924
925
926
927
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

928
  if eval_spec_names is None:
929
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
930
931

  eval_specs = []
932
933
934
935
936
937
938
939
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
940
941
942
943
944
945
946
947
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
948
949
950
951

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
952
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
953
954

  return train_spec, eval_specs
955
956


957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
def _evaluate_checkpoint(estimator,
                         input_fn,
                         checkpoint_path,
                         name,
                         max_retries=0):
  """Evaluates a checkpoint.

  Args:
    estimator: Estimator object to use for evaluation.
    input_fn: Input function to use for evaluation.
    checkpoint_path: Path of the checkpoint to evaluate.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.

  Returns:
    Estimator evaluation results.
  """
  always_retry = True if max_retries < 0 else False
  retries = 0
  while always_retry or retries <= max_retries:
    try:
      return estimator.evaluate(
          input_fn=input_fn,
          steps=None,
          checkpoint_path=checkpoint_path,
          name=name)
    except tf.errors.InvalidArgumentError as e:
      if always_retry or retries < max_retries:
        tf.logging.info('Retrying checkpoint evaluation after exception: %s', e)
        retries += 1
      else:
        raise e


993
994
995
996
997
998
def continuous_eval_generator(estimator,
                              model_dir,
                              input_fn,
                              train_steps,
                              name,
                              max_retries=0):
999
1000
1001
1002
1003
1004
1005
1006
1007
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
1008
1009
1010
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
1011
1012
1013

  Yields:
    Pair of current step and eval_results.
1014
  """
1015

1016
1017
1018
1019
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

1020
  for ckpt in tf.train.checkpoints_iterator(
1021
1022
1023
1024
1025
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
1026
1027
1028
1029
1030
1031
      eval_results = _evaluate_checkpoint(
          estimator=estimator,
          input_fn=input_fn,
          checkpoint_path=ckpt,
          name=name,
          max_retries=max_retries)
1032
1033
1034
1035
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
1036
      yield (current_step, eval_results)
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
def continuous_eval(estimator,
                    model_dir,
                    input_fn,
                    train_steps,
                    name,
                    max_retries=0):
  """Performs continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
  """
  for current_step, eval_results in continuous_eval_generator(
      estimator, model_dir, input_fn, train_steps, name, max_retries):
    tf.logging.info('Step %s, Eval results: %s', current_step, eval_results)


1071
1072
1073
1074
1075
1076
1077
1078
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
1079

1080
1081
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
1117
      save_final_config=True,
1118
1119
1120
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
1121
  eval_input_fns = train_and_eval_dict['eval_input_fns']
1122
1123
1124
1125
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
1126
      contrib_learn.utils.saved_model_export_utils.make_export_strategy(
1127
1128
1129
          serving_input_fn=predict_input_fn)
  ]

1130
  return contrib_learn.Experiment(
1131
1132
      estimator=estimator,
      train_input_fn=train_input_fn,
1133
      eval_input_fn=eval_input_fns[0],
1134
      train_steps=train_steps,
1135
      eval_steps=None,
1136
      export_strategies=export_strategies,
1137
1138
      eval_delay_secs=120,
  )