model_lib.py 31.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24
25
26
27
28

import tensorflow as tf

from object_detection import eval_util
from object_detection import inputs
29
from object_detection.builders import graph_rewriter_builder
30
31
32
33
34
35
36
37
38
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

39
40
41
42
43
44
45
46
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
47
48
49
50
51
52
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
53
54
55
}


56
57
def _prepare_groundtruth_for_eval(detection_model, class_agnostic):
  """Extracts groundtruth data from detection_model and prepares it for eval.
58
59
60
61
62
63
64
65
66
67
68
69
70

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_masks': 3D float32 tensor of instance masks (if provided in
        groundtruth)
71
72
      'groundtruth_is_crowd': [num_boxes] bool tensor indicating is_crowd
        annotations (if provided in groundtruth).
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
  groundtruth_boxes = detection_model.groundtruth_lists(
      fields.BoxListFields.boxes)[0]
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
    groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
    groundtruth_classes_one_hot = tf.ones([groundtruth_boxes_shape[0], 1])
  else:
    groundtruth_classes_one_hot = detection_model.groundtruth_lists(
        fields.BoxListFields.classes)[0]
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
      tf.argmax(groundtruth_classes_one_hot, axis=1) + label_id_offset)
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
    groundtruth[input_data_fields.groundtruth_instance_masks] = (
        detection_model.groundtruth_lists(fields.BoxListFields.masks)[0])
96
97
98
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
    groundtruth[input_data_fields.groundtruth_is_crowd] = (
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd)[0])
99
100
101
102
103
104
105
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
106
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
107
108
109
110
111
112

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

113
114
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
133
134
135
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False):
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
191
  eval_config = configs['eval_config']
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
210
211
212
213

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
214
215
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
216
217
218
219
220
221
222
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
223
224
225
226
227
228
229
230
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
      unpad_groundtruth_tensors = True if boxes_shape[1] is not None else False
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
231
232
233
234
235
236
237
238
239
240
241

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
      gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
      gt_masks_list = None
      if fields.InputDataFields.groundtruth_instance_masks in labels:
        gt_masks_list = labels[
            fields.InputDataFields.groundtruth_instance_masks]
      gt_keypoints_list = None
      if fields.InputDataFields.groundtruth_keypoints in labels:
        gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
242
243
244
      gt_weights_list = None
      if fields.InputDataFields.groundtruth_weights in labels:
        gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
245
      gt_is_crowd_list = None
246
247
      if fields.InputDataFields.groundtruth_is_crowd in labels:
        gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
248
249
250
251
      detection_model.provide_groundtruth(
          groundtruth_boxes_list=gt_boxes_list,
          groundtruth_classes_list=gt_classes_list,
          groundtruth_masks_list=gt_masks_list,
252
          groundtruth_keypoints_list=gt_keypoints_list,
253
          groundtruth_weights_list=gt_weights_list,
254
          groundtruth_is_crowd_list=gt_is_crowd_list)
255
256

    preprocessed_images = features[fields.InputDataFields.image]
257
258
259
260
261
262
263
264
265
266
267
268
    if use_tpu and train_config.use_bfloat16:
      with tf.contrib.tpu.bfloat16_scope():
        prediction_dict = detection_model.predict(
            preprocessed_images,
            features[fields.InputDataFields.true_image_shape])
        for k, v in prediction_dict.items():
          if v.dtype == tf.bfloat16:
            prediction_dict[k] = tf.cast(v, tf.float32)
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
          features[fields.InputDataFields.true_image_shape])
269
270
271
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
      detections = detection_model.postprocess(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
272
273
274

    if mode == tf.estimator.ModeKeys.TRAIN:
      if train_config.fine_tune_checkpoint and hparams.load_pretrained:
275
276
277
278
279
280
281
282
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
283
        asg_map = detection_model.restore_map(
284
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
285
286
287
288
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
289
290
                asg_map,
                train_config.fine_tune_checkpoint,
291
292
                include_global_step=False))
        if use_tpu:
293

294
295
296
297
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
298

299
300
301
302
303
304
305
306
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      losses_dict = detection_model.loss(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
307
      losses = [loss_tensor for loss_tensor in losses_dict.values()]
308
309
310
311
      if train_config.add_regularization_loss:
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        if regularization_losses:
312
313
          regularization_loss = tf.add_n(
              regularization_losses, name='regularization_loss')
314
          losses.append(regularization_loss)
315
          losses_dict['Loss/regularization_loss'] = regularization_loss
316
      total_loss = tf.add_n(losses, name='total_loss')
317
      losses_dict['Loss/total_loss'] = total_loss
318

319
320
321
322
323
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

324
325
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
326
327
328
329
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

330
    if mode == tf.estimator.ModeKeys.TRAIN:
331
      if use_tpu:
332
        training_optimizer = tf.contrib.tpu.CrossShardOptimizer(
333
334
335
336
            training_optimizer)

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
337
338
339
340
341
342
343
344
345
346
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
      trainable_variables = tf.contrib.framework.filter_variables(
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
      train_op = tf.contrib.layers.optimize_loss(
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
              tf.estimator.export.PredictOutput(detections)
      }

    eval_metric_ops = None
373
    scaffold = None
374
    if mode == tf.estimator.ModeKeys.EVAL:
375
376
377
378
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
      groundtruth = _prepare_groundtruth_for_eval(detection_model,
                                                  class_agnostic)
379
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
380
381
382
383
384
385
386
387
      if use_original_images:
        eval_images = tf.cast(tf.image.resize_bilinear(
            features[fields.InputDataFields.original_image][0:1],
            features[fields.InputDataFields.original_image_spatial_shape][0]),
                              tf.uint8)
      else:
        eval_images = features[fields.InputDataFields.image]

388
      eval_dict = eval_util.result_dict_for_single_example(
389
          eval_images[0:1],
390
391
392
393
          features[inputs.HASH_KEY][0],
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
394
          scale_to_absolute=True)
395
396
397
398
399
400

      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
401
      vis_metric_ops = None
402
      if not use_tpu and use_original_images:
403
404
405
406
407
408
409
410
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
            use_normalized_coordinates=False)
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
411

412
413
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
414
          eval_config, category_index.values(), eval_dict)
415
416
417
418
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
419
420
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
421
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
422

423
424
425
426
427
428
429
430
431
432
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

433
434
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
450
451
          export_outputs=export_outputs,
          scaffold=scaffold)
452
453
454
455

  return model_fn


456
457
458
459
def create_estimator_and_inputs(run_config,
                                hparams,
                                pipeline_config_path,
                                train_steps=None,
460
461
                                sample_1_of_n_eval_examples=1,
                                sample_1_of_n_eval_on_train_examples=1,
462
463
464
465
466
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
467
                                override_eval_num_epochs=True,
468
469
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
470
471
472
473
474
475
476

  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
477
478
479
480
481
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
482
483
484
485
486
487
488
489
490
491
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

492
493
494
495
496
497
498
499
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
500
501
    override_eval_num_epochs: Whether to overwrite the number of epochs to
      1 for eval_input.
502
503
504
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
505
506
507
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
508
509
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
510
    'eval_on_train_input_fn': An evaluation-on-train input function.
511
512
513
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
514
  """
515
516
517
518
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
519
520
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
521
522
523
524
525
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']

  configs = get_configs_from_pipeline_file(pipeline_config_path)
526
527
  kwargs.update({
      'train_steps': train_steps,
pkulzc's avatar
pkulzc committed
528
      'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
529
530
531
532
533
  })
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
534
  configs = merge_external_params_with_configs(
535
      configs, hparams, kwargs_dict=kwargs)
536
537
538
539
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
540
541
542
543
544
545
546
547
548
549
550
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
551

552
553
554
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
555
556
557
558

  detection_model_fn = functools.partial(
      model_builder.build, model_config=model_config)

559
  # Create the input functions for TRAIN/EVAL/PREDICT.
560
  train_input_fn = create_train_input_fn(
561
562
563
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
564
565
566
567
568
569
570
571
572
  eval_input_fns = [
      create_eval_input_fn(
          eval_config=eval_config,
          eval_input_config=eval_input_config,
          model_config=model_config) for eval_input_config in eval_input_configs
  ]
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
573
574
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
575
      eval_input_config=eval_on_train_input_config,
576
      model_config=model_config)
577
  predict_input_fn = create_predict_input_fn(
578
      model_config=model_config, predict_input_config=eval_input_configs[0])
579

580
581
582
  export_to_tpu = hparams.get('export_to_tpu', False)
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
583
584
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu)
  if use_tpu_estimator:
585
    estimator = tf.contrib.tpu.TPUEstimator(
586
587
588
589
590
591
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
592
        # TODO(lzc): Remove conditional after CMLE moves to TF 1.9
593
594
595
        params=params if params else {})
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
596

597
  # Write the as-run pipeline config to disk.
598
  if run_config.is_chief:
599
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
600
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
601

602
  return dict(
603
604
      estimator=estimator,
      train_input_fn=train_input_fn,
605
606
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
607
      eval_on_train_input_fn=eval_on_train_input_fn,
608
      predict_input_fn=predict_input_fn,
609
      train_steps=train_steps)
610
611
612


def create_train_and_eval_specs(train_input_fn,
613
                                eval_input_fns,
614
                                eval_on_train_input_fn,
615
616
617
618
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
619
                                eval_spec_names=None):
620
621
622
623
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
624
625
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
626
627
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
628
629
630
631
632
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
633
    eval_spec_names: A list of string names for each `EvalSpec`.
634
635

  Returns:
636
637
638
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
639
640
641
642
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

643
  if eval_spec_names is None:
644
    eval_spec_names = [ str(i) for i in range(len(eval_input_fns)) ]
645
646
647
648
649
650
651
652
653
654
655
656

  eval_specs = []
  for eval_spec_name, eval_input_fn in zip(eval_spec_names, eval_input_fns):
    exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
657
658
659
660

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
661
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
662
663

  return train_spec, eval_specs
664
665


666
def continuous_eval(estimator, model_dir, input_fn, train_steps, name):
667
668
669
670
671
672
673
674
675
676
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
  """
677

678
679
680
681
682
683
684
685
686
687
688
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

  for ckpt in tf.contrib.training.checkpoints_iterator(
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
      eval_results = estimator.evaluate(
689
          input_fn=input_fn, steps=None, checkpoint_path=ckpt, name=name)
690
691
692
693
694
695
696
697
698
699
700
701
702
703
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


704
705
706
707
708
709
710
711
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
712

713
714
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
715

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
753
  eval_input_fns = train_and_eval_dict['eval_input_fns']
754
755
756
757
758
759
760
761
762
763
764
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
      tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy(
          serving_input_fn=predict_input_fn)
  ]

  return tf.contrib.learn.Experiment(
      estimator=estimator,
      train_input_fn=train_input_fn,
765
      eval_input_fn=eval_input_fns[0],
766
      train_steps=train_steps,
767
      eval_steps=None,
768
      export_strategies=export_strategies,
769
770
      eval_delay_secs=120,
  )