ncf_keras_main.py 17.8 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import json
Shining Sun's avatar
Shining Sun committed
26
27
28
import os

# pylint: disable=g-bad-import-order
29
from absl import app as absl_app
Shining Sun's avatar
Shining Sun committed
30
from absl import flags
31
from absl import logging
Shining Sun's avatar
Shining Sun committed
32
33
34
35
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
36
from official.recommendation import constants as rconst
Shining Sun's avatar
Shining Sun committed
37
from official.recommendation import ncf_common
38
from official.recommendation import ncf_input_pipeline
Shining Sun's avatar
Shining Sun committed
39
40
41
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
42
from official.utils.misc import distribution_utils
43
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
44
from official.utils.misc import model_helpers
Nimit Nigania's avatar
Nimit Nigania committed
45
from official.utils.flags import core as flags_core
46
from official.utils.misc import tpu_lib
Shining Sun's avatar
Shining Sun committed
47
48
49
50

FLAGS = flags.FLAGS


guptapriya's avatar
guptapriya committed
51
52
def metric_fn(logits, dup_mask, params):
  dup_mask = tf.cast(dup_mask, tf.float32)
53
  logits = tf.slice(logits, [0, 1], [-1, -1])
guptapriya's avatar
guptapriya committed
54
55
56
  in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
      logits,
      dup_mask,
guptapriya's avatar
cleanup  
guptapriya committed
57
      params["match_mlperf"])
guptapriya's avatar
guptapriya committed
58
59
60
61
  metric_weights = tf.cast(metric_weights, tf.float32)
  return in_top_k, metric_weights


62
63
64
65
66
67
class MetricLayer(tf.keras.layers.Layer):
  """Custom layer of metrics for NCF model."""

  def __init__(self, params):
    super(MetricLayer, self).__init__()
    self.params = params
guptapriya's avatar
guptapriya committed
68

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
  def call(self, inputs, training=False):
70
    logits, dup_mask = inputs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
72
73
74
75
76
77
78
79
80
81

    if training:
      hr_sum = 0.0
      hr_count = 0.0
    else:
      metric, metric_weights = metric_fn(logits, dup_mask, self.params)
      hr_sum = tf.reduce_sum(metric * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)

    self.add_metric(hr_sum, name="hr_sum", aggregation="mean")
    self.add_metric(hr_count, name="hr_count", aggregation="mean")
guptapriya's avatar
guptapriya committed
82
    return logits
83
84


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
class LossLayer(tf.keras.layers.Layer):
  """Pass-through loss layer for NCF model."""

  def __init__(self, loss_normalization_factor):
    super(LossLayer, self).__init__()
    self.loss_normalization_factor = loss_normalization_factor
    self.loss = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction="sum")

  def call(self, inputs):
    logits, labels, valid_pt_mask_input = inputs
    loss = self.loss(
        y_true=labels, y_pred=logits, sample_weight=valid_pt_mask_input)
    loss = loss * (1.0 / self.loss_normalization_factor)
    self.add_loss(loss)
    return logits


Shining Sun's avatar
Shining Sun committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


118
119
120
121
122
123
124
125
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
126
    self.stopped_epoch = 0
127
128
129
130
131
132
133
134
135

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
Haoyu Zhang's avatar
Haoyu Zhang committed
136
      print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
137
138
139
140
141

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
Haoyu Zhang's avatar
Haoyu Zhang committed
142
143
144
      logging.warning("Early stopping conditioned on metric `%s` "
                      "which is not available. Available metrics are: %s",
                      self.monitor, ",".join(list(logs.keys())))
145
146
147
    return monitor_value


Shining Sun's avatar
Shining Sun committed
148
149
def _get_keras_model(params):
  """Constructs and returns the model."""
Haoyu Zhang's avatar
Haoyu Zhang committed
150
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
151
152

  user_input = tf.keras.layers.Input(
153
      shape=(1,), name=movielens.USER_COLUMN, dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
154
155

  item_input = tf.keras.layers.Input(
156
      shape=(1,), name=movielens.ITEM_COLUMN, dtype=tf.int32)
guptapriya's avatar
guptapriya committed
157

158
  valid_pt_mask_input = tf.keras.layers.Input(
159
      shape=(1,), name=rconst.VALID_POINT_MASK, dtype=tf.bool)
160
161

  dup_mask_input = tf.keras.layers.Input(
162
      shape=(1,), name=rconst.DUPLICATE_MASK, dtype=tf.int32)
163
164

  label_input = tf.keras.layers.Input(
165
      shape=(1,), name=rconst.TRAIN_LABEL_KEY, dtype=tf.bool)
Shining Sun's avatar
Shining Sun committed
166

167
  base_model = neumf_model.construct_model(user_input, item_input, params)
Shining Sun's avatar
Shining Sun committed
168

169
  logits = base_model.output
170

Shining Sun's avatar
Shining Sun committed
171
  zeros = tf.keras.layers.Lambda(
172
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
173
174

  softmax_logits = tf.keras.layers.concatenate(
175
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
176
177
      axis=-1)

178
179
  # Custom training loop calculates loss and metric as a part of
  # training/evaluation step function.
180
181
  if not params["keras_use_ctl"]:
    softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])
182
183
184
185
    # TODO(b/134744680): Use model.add_loss() instead once the API is well
    # supported.
    softmax_logits = LossLayer(batch_size)(
        [softmax_logits, label_input, valid_pt_mask_input])
186

Shining Sun's avatar
Shining Sun committed
187
  keras_model = tf.keras.Model(
guptapriya's avatar
guptapriya committed
188
189
190
191
192
193
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
Shining Sun's avatar
Shining Sun committed
194
195
196
197
198
199
200
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model


def run_ncf(_):
201
202
  """Run NCF training and eval with Keras."""

203
204
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

guptapriya's avatar
guptapriya committed
205
206
207
  if FLAGS.seed is not None:
    print("Setting tf seed")
    tf.random.set_seed(FLAGS.seed)
208

Shining Sun's avatar
Shining Sun committed
209
  params = ncf_common.parse_flags(FLAGS)
210
  model_helpers.apply_clean(flags.FLAGS)
Shining Sun's avatar
Shining Sun committed
211

212
213
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
214
215
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
216
217
  params["distribute_strategy"] = strategy

218
  if not keras_utils.is_v2_0() and strategy is not None:
219
220
    logging.error("NCF Keras only works with distribution strategy in TF 2.0")
    return
guptapriya's avatar
guptapriya committed
221
  if (params["keras_use_ctl"] and (
222
      not keras_utils.is_v2_0() or strategy is None)):
223
    logging.error(
guptapriya's avatar
guptapriya committed
224
        "Custom training loop only works with tensorflow 2.0 and dist strat.")
225
    return
226
227
228
  if params["use_tpu"] and not params["keras_use_ctl"]:
    logging.error("Custom training loop must be used when using TPUStrategy.")
    return
229

230
  batch_size = params["batch_size"]
231
232
233
234
235
236
237
238
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  callbacks = [time_callback]

  producer, input_meta_data = None, None
  generate_input_online = params["train_dataset_path"] is None

  if generate_input_online:
    # Start data producing thread.
239
    num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
240
241
242
243
244
    producer.start()
    per_epoch_callback = IncrementEpochCallback(producer)
    callbacks.append(per_epoch_callback)
  else:
    assert params["eval_dataset_path"] and params["input_meta_data_path"]
245
    with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
246
247
248
      input_meta_data = json.loads(reader.read().decode("utf-8"))
      num_users = input_meta_data["num_users"]
      num_items = input_meta_data["num_items"]
Shining Sun's avatar
Shining Sun committed
249
250

  params["num_users"], params["num_items"] = num_users, num_items
251
252
253

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
guptapriya's avatar
guptapriya committed
254
        "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
255
    callbacks.append(early_stopping_callback)
256

257
258
259
260
  with tf.device(tpu_lib.get_primary_cpu_task(params["use_tpu"])):
    (train_input_dataset, eval_input_dataset,
     num_train_steps, num_eval_steps) = \
      (ncf_input_pipeline.create_ncf_input_data(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
261
          params, producer, input_meta_data, strategy))
262
    steps_per_epoch = None if generate_input_online else num_train_steps
263
264

    with distribution_utils.get_strategy_scope(strategy):
265
266
267
268
269
270
      keras_model = _get_keras_model(params)
      optimizer = tf.keras.optimizers.Adam(
          learning_rate=params["learning_rate"],
          beta_1=params["beta1"],
          beta_2=params["beta2"],
          epsilon=params["epsilon"])
Nimit Nigania's avatar
Nimit Nigania committed
271
      if FLAGS.dtype == "fp16":
Nimit Nigania's avatar
Nimit Nigania committed
272
273
274
275
276
        optimizer = \
          tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
              optimizer,
              loss_scale=flags_core.get_loss_scale(FLAGS,
                                                   default_for_fp16="dynamic"))
277
278
279
280
281
282
283
284
285
286
287
288
289

      if params["keras_use_ctl"]:
        train_loss, eval_results = run_ncf_custom_training(
            params,
            strategy,
            keras_model,
            optimizer,
            callbacks,
            train_input_dataset,
            eval_input_dataset,
            num_train_steps,
            num_eval_steps,
            generate_input_online=generate_input_online)
290
      else:
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
        # a valid arg for this model. Also remove as a valid flag.
        if FLAGS.force_v2_in_keras_compile is not None:
          keras_model.compile(
              optimizer=optimizer,
              run_eagerly=FLAGS.run_eagerly,
              experimental_run_tf_function=FLAGS.force_v2_in_keras_compile)
        else:
          keras_model.compile(
              optimizer=optimizer, run_eagerly=FLAGS.run_eagerly)

        history = keras_model.fit(
            train_input_dataset,
            epochs=FLAGS.train_epochs,
            steps_per_epoch=steps_per_epoch,
            callbacks=callbacks,
            validation_data=eval_input_dataset,
            validation_steps=num_eval_steps,
            verbose=2)

        logging.info("Training done. Start evaluating")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
313
        eval_loss_and_metrics = keras_model.evaluate(
314
315
316
317
            eval_input_dataset, steps=num_eval_steps, verbose=2)

        logging.info("Keras evaluation is done.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
318
319
320
321
322
323
324
325
        # Keras evaluate() API returns scalar loss and metric values from
        # evaluation as a list. Here, the returned list would contain
        # [evaluation loss, hr sum, hr count].
        eval_hit_rate = eval_loss_and_metrics[1] / eval_loss_and_metrics[2]

        # Format evaluation result into [eval loss, eval hit accuracy].
        eval_results = [eval_loss_and_metrics[0], eval_hit_rate]

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        if history and history.history:
          train_history = history.history
          train_loss = train_history["loss"][-1]

    stats = build_stats(train_loss, eval_results, time_callback)
    return stats


def run_ncf_custom_training(params,
                            strategy,
                            keras_model,
                            optimizer,
                            callbacks,
                            train_input_dataset,
                            eval_input_dataset,
                            num_train_steps,
                            num_eval_steps,
                            generate_input_online=True):
  """Runs custom training loop.

  Args:
    params: Dictionary containing training parameters.
    strategy: Distribution strategy to be used for distributed training.
    keras_model: Model used for training.
    optimizer: Optimizer used for training.
    callbacks: Callbacks to be invoked between batches/epochs.
    train_input_dataset: tf.data.Dataset used for training.
    eval_input_dataset: tf.data.Dataset used for evaluation.
    num_train_steps: Total number of steps to run for training.
    num_eval_steps: Total number of steps to run for evaluation.
    generate_input_online: Whether input data was generated by data producer.
      When data is generated by data producer, then train dataset must be
      re-initialized after every epoch.

  Returns:
    A tuple of train loss and a list of training and evaluation results.
  """
  loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
      reduction="sum", from_logits=True)
  train_input_iterator = iter(
      strategy.experimental_distribute_dataset(train_input_dataset))
367

368
369
  def train_step(train_iterator):
    """Called once per step to train the model."""
370

371
372
373
374
375
376
377
378
379
380
    def step_fn(features):
      """Computes loss and applied gradient per replica."""
      with tf.GradientTape() as tape:
        softmax_logits = keras_model(features)
        labels = features[rconst.TRAIN_LABEL_KEY]
        loss = loss_object(
            labels,
            softmax_logits,
            sample_weight=features[rconst.VALID_POINT_MASK])
        loss *= (1.0 / params["batch_size"])
Nimit Nigania's avatar
Nimit Nigania committed
381
382
        if FLAGS.dtype == "fp16":
          loss = optimizer.get_scaled_loss(loss)
383
384

      grads = tape.gradient(loss, keras_model.trainable_variables)
Nimit Nigania's avatar
Nimit Nigania committed
385
386
      if FLAGS.dtype == "fp16":
        grads = optimizer.get_unscaled_gradients(grads)
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
      # Converting gradients to dense form helps in perf on GPU for NCF
      grads = neumf_model.sparse_to_dense_grads(
          list(zip(grads, keras_model.trainable_variables)))
      optimizer.apply_gradients(grads)
      return loss

    per_replica_losses = strategy.experimental_run_v2(
        step_fn, args=(next(train_iterator),))
    mean_loss = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
    return mean_loss

  def eval_step(eval_iterator):
    """Called once per eval step to compute eval metrics."""

    def step_fn(features):
      """Computes eval metrics per replica."""
      softmax_logits = keras_model(features)
      in_top_k, metric_weights = metric_fn(softmax_logits,
                                           features[rconst.DUPLICATE_MASK],
                                           params)
      hr_sum = tf.reduce_sum(in_top_k * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)
      return hr_sum, hr_count
411

412
413
414
415
416
417
418
419
    per_replica_hr_sum, per_replica_hr_count = (
        strategy.experimental_run_v2(
            step_fn, args=(next(eval_iterator),)))
    hr_sum = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
    hr_count = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
    return hr_sum, hr_count
420

421
422
423
  if not FLAGS.run_eagerly:
    train_step = tf.function(train_step)
    eval_step = tf.function(eval_step)
424

425
426
  for callback in callbacks:
    callback.on_train_begin()
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
  train_loss = 0
  for epoch in range(FLAGS.train_epochs):
    for cb in callbacks:
      cb.on_epoch_begin(epoch)

    # As NCF dataset is sampled with randomness, not repeating
    # data elements in each epoch has significant impact on
    # convergence. As so, offline-generated TF record files
    # contains all epoch worth of data. Thus we do not need
    # to initialize dataset when reading from tf record files.
    if generate_input_online:
      train_input_iterator = iter(
          strategy.experimental_distribute_dataset(train_input_dataset))

    train_loss = 0
    for step in range(num_train_steps):
      current_step = step + epoch * num_train_steps
      for c in callbacks:
        c.on_batch_begin(current_step)

      train_loss += train_step(train_input_iterator)

      for c in callbacks:
        c.on_batch_end(current_step)

    train_loss /= num_train_steps
    logging.info("Done training epoch %s, epoch loss=%s.", epoch + 1,
                 train_loss)

    eval_input_iterator = iter(
        strategy.experimental_distribute_dataset(eval_input_dataset))
    hr_sum = 0
    hr_count = 0
    for _ in range(num_eval_steps):
      step_hr_sum, step_hr_count = eval_step(eval_input_iterator)
      hr_sum += step_hr_sum
      hr_count += step_hr_count

    logging.info("Done eval epoch %s, hr=%s.", epoch + 1, hr_sum / hr_count)

    if (FLAGS.early_stopping and
        float(hr_sum / hr_count) > params["hr_threshold"]):
      break

  for c in callbacks:
    c.on_train_end()

  return train_loss, [None, hr_sum / hr_count]
476
477


478
def build_stats(loss, eval_result, time_callback):
479
480
  """Normalizes and returns dictionary of stats.

Haoyu Zhang's avatar
Haoyu Zhang committed
481
482
483
484
485
486
487
488
  Args:
    loss: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback likely used during keras.fit.

  Returns:
    Dictionary of normalized results.
489
490
  """
  stats = {}
491
  if loss:
Haoyu Zhang's avatar
Haoyu Zhang committed
492
    stats["loss"] = loss
493
494

  if eval_result:
Haoyu Zhang's avatar
Haoyu Zhang committed
495
496
    stats["eval_loss"] = eval_result[0]
    stats["eval_hit_rate"] = eval_result[1]
497
498
499

  if time_callback:
    timestamp_log = time_callback.timestamp_log
Haoyu Zhang's avatar
Haoyu Zhang committed
500
501
    stats["step_timestamp_log"] = timestamp_log
    stats["train_finish_time"] = time_callback.train_finish_time
502
    if len(timestamp_log) > 1:
Haoyu Zhang's avatar
Haoyu Zhang committed
503
      stats["avg_exp_per_second"] = (
504
505
506
507
508
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
509
510
511
512
513
514
515
516
517
518
519
520


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    run_ncf(FLAGS)


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
  absl_app.run(main)