keras_common.py 7.41 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

23
24
import numpy as np

Toby Boyd's avatar
Toby Boyd committed
25
26
27
# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf
28
29
from tensorflow.python.keras.optimizer_v2 import (gradient_descent as
                                                  gradient_descent_v2)
30
31


Shining Sun's avatar
Shining Sun committed
32
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
33
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
34
35
TRAIN_TOP_1 = 'training_accuracy_top_1'

Shining Sun's avatar
Shining Sun committed
36

37
38
39
40
class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size):
41
    """Callback for logging performance (# image/second).
42
43
44
45
46
47
48

    Args:
      batch_size: Total batch size.

    """
    self._batch_size = batch_size
    super(TimeHistory, self).__init__()
Shining Sun's avatar
Shining Sun committed
49
    self.log_steps = 100
50
51
52
53
54
55

  def on_train_begin(self, logs=None):
    self.record_batch = True

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
56
      self.start_time = time.time()
57
58
59
      self.record_batch = False

  def on_batch_end(self, batch, logs=None):
Shining Sun's avatar
Shining Sun committed
60
61
62
    if batch % self.log_steps == 0:
      elapsed_time = time.time() - self.start_time
      examples_per_second = (self._batch_size * self.log_steps) / elapsed_time
63
64
65
66
67
      self.record_batch = True
      # TODO(anjalisridhar): add timestamp as well.
      if batch != 0:
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
Shining Sun's avatar
Shining Sun committed
68
                        (batch, elapsed_time, examples_per_second))
69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
91
92
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
93
94
95
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
96
    """Executes before step begins."""
97
98
99
100
    lr = self.schedule(self.epochs,
                       batch,
                       self.batches_per_epoch,
                       self.batch_size)
101
102
103
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
Shining Sun's avatar
Shining Sun committed
104
      self.model.optimizer.learning_rate = lr  # lr should be a float here
105
      self.prev_lr = lr
106
107
108
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler '
                       'change learning rate to %s.', self.epochs, batch, lr)

109

Shining Sun's avatar
Shining Sun committed
110
def get_optimizer():
111
112
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
Shining Sun's avatar
Shining Sun committed
113
  return gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
114
115


116
def get_callbacks(learning_rate_schedule_fn, num_images):
117
  """Returns common callbacks."""
Shining Sun's avatar
Shining Sun committed
118
  time_callback = TimeHistory(FLAGS.batch_size)
119
120

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
121
      log_dir=FLAGS.model_dir)
122

Shining Sun's avatar
Shining Sun committed
123
  lr_callback = LearningRateBatchScheduler(
124
125
126
      learning_rate_schedule_fn,
      batch_size=FLAGS.batch_size,
      num_images=num_images)
127
128
129

  return time_callback, tensorboard_callback, lr_callback

Shining Sun's avatar
Shining Sun committed
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def build_stats(history, eval_output):
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
    stats['accuracy_top_1'] = eval_output[1].item()
    stats['eval_loss'] = eval_output[0].item()
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['categorical_accuracy'][-1].item()
    elif 'sparse_categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['sparse_categorical_accuracy'][-1].item()

  return stats


Shining Sun's avatar
Shining Sun committed
160
161
def define_keras_flags():
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
162
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
Shining Sun's avatar
Shining Sun committed
163
  flags.DEFINE_integer(
164
165
      name='train_steps', default=None,
      help='The number of steps to run for training. If it is larger than '
Shining Sun's avatar
Shining Sun committed
166
      '# batches per epoch, then use # batches per epoch. When this flag is '
167
      'set, only one epoch is going to run for training.')
168

Shining Sun's avatar
Shining Sun committed
169
170
171
172
173
174
175
176

def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
177
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
        [batch_size] + [1],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data

  return input_fn