mnist.py 8.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
21
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23

24
from official.mnist import dataset
25
from official.utils.flags import core as flags_core
26
from official.utils.logs import hooks_helper
27
from official.utils.misc import distribution_utils
28
from official.utils.misc import model_helpers
29

30

31
LEARNING_RATE = 1e-4
32

Karmel Allison's avatar
Karmel Allison committed
33

34
def create_model(data_format):
Asim Shankar's avatar
Asim Shankar committed
35
  """Model to recognize digits in the MNIST dataset.
Asim Shankar's avatar
Asim Shankar committed
36
37
38
39
40
41

  Network structure is equivalent to:
  https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
  and
  https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

42
43
44
  But uses the tf.keras API.

  Args:
Asim Shankar's avatar
Asim Shankar committed
45
46
47
    data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is
      typically faster on GPUs while 'channels_last' is typically faster on
      CPUs. See
48
      https://www.tensorflow.org/performance/performance_guide#data_formats
Asim Shankar's avatar
Asim Shankar committed
49

50
51
52
53
54
55
56
57
58
  Returns:
    A tf.keras.Model.
  """
  if data_format == 'channels_first':
    input_shape = [1, 28, 28]
  else:
    assert data_format == 'channels_last'
    input_shape = [28, 28, 1]

Asim Shankar's avatar
Asim Shankar committed
59
60
61
  l = tf.keras.layers
  max_pool = l.MaxPooling2D(
      (2, 2), (2, 2), padding='same', data_format=data_format)
62
63
  # The model consists of a sequential chain of layers, so tf.keras.Sequential
  # (a subclass of tf.keras.Model) makes for a compact description.
Asim Shankar's avatar
Asim Shankar committed
64
65
  return tf.keras.Sequential(
      [
66
67
68
          l.Reshape(
              target_shape=input_shape,
              input_shape=(28 * 28,)),
Asim Shankar's avatar
Asim Shankar committed
69
70
71
72
73
          l.Conv2D(
              32,
              5,
              padding='same',
              data_format=data_format,
74
75
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
76
77
78
79
80
          l.Conv2D(
              64,
              5,
              padding='same',
              data_format=data_format,
81
82
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
83
84
85
86
87
          l.Flatten(),
          l.Dense(1024, activation=tf.nn.relu),
          l.Dropout(0.4),
          l.Dense(10)
      ])
Asim Shankar's avatar
Asim Shankar committed
88
89


90
def define_mnist_flags():
91
  flags_core.define_base()
92
  flags_core.define_performance(num_parallel_calls=False)
93
94
95
96
97
98
99
100
  flags_core.define_image()
  flags.adopt_module_key_flags(flags_core)
  flags_core.set_defaults(data_dir='/tmp/mnist_data',
                          model_dir='/tmp/mnist_model',
                          batch_size=100,
                          train_epochs=40)


Asim Shankar's avatar
Asim Shankar committed
101
102
def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
103
  model = create_model(params['data_format'])
104
105
106
107
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
108
  if mode == tf.estimator.ModeKeys.PREDICT:
109
110
111
112
113
114
115
116
117
118
119
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
120
  if mode == tf.estimator.ModeKeys.TRAIN:
121
    optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
122

123
    logits = model(image, training=True)
124
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
125
    accuracy = tf.metrics.accuracy(
126
        labels=labels, predictions=tf.argmax(logits, axis=1))
127
128
129
130

    # Name tensors to be logged with LoggingTensorHook.
    tf.identity(LEARNING_RATE, 'learning_rate')
    tf.identity(loss, 'cross_entropy')
131
    tf.identity(accuracy[1], name='train_accuracy')
132
133

    # Save accuracy scalar to Tensorboard output.
134
    tf.summary.scalar('train_accuracy', accuracy[1])
135

136
137
138
139
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
140
  if mode == tf.estimator.ModeKeys.EVAL:
141
    logits = model(image, training=False)
142
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
143
144
145
146
147
148
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Asim Shankar's avatar
Asim Shankar committed
149
                    labels=labels, predictions=tf.argmax(logits, axis=1)),
150
        })
151
152


153
154
155
156
157
158
def run_mnist(flags_obj):
  """Run MNIST training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
159
  model_helpers.apply_clean(flags_obj)
160
161
  model_function = model_fn

162
163
164
165
  session_config = tf.ConfigProto(
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
      allow_soft_placement=True)
166

167
  distribution_strategy = distribution_utils.get_distribution_strategy(
168
169
170
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_core.get_num_gpus(flags_obj),
      all_reduce_alg=flags_obj.all_reduce_alg)
171

172
173
  run_config = tf.estimator.RunConfig(
      train_distribute=distribution_strategy, session_config=session_config)
174

175
  data_format = flags_obj.data_format
Asim Shankar's avatar
Asim Shankar committed
176
177
178
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
179
  mnist_classifier = tf.estimator.Estimator(
180
      model_fn=model_function,
181
      model_dir=flags_obj.model_dir,
182
      config=run_config,
Asim Shankar's avatar
Asim Shankar committed
183
      params={
184
          'data_format': data_format,
Asim Shankar's avatar
Asim Shankar committed
185
      })
186

187
  # Set up training and evaluation input functions.
Asim Shankar's avatar
Asim Shankar committed
188
  def train_input_fn():
Karmel Allison's avatar
Karmel Allison committed
189
190
    """Prepare data for training."""

Asim Shankar's avatar
Asim Shankar committed
191
192
193
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
194
195
    ds = dataset.train(flags_obj.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(flags_obj.batch_size)
Asim Shankar's avatar
Asim Shankar committed
196

197
198
    # Iterate through the dataset a set number (`epochs_between_evals`) of times
    # during each training session.
199
    ds = ds.repeat(flags_obj.epochs_between_evals)
200
    return ds
201

Asim Shankar's avatar
Asim Shankar committed
202
  def eval_input_fn():
203
204
    return dataset.test(flags_obj.data_dir).batch(
        flags_obj.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
205

206
207
  # Set up hook that outputs training logs every 100 steps.
  train_hooks = hooks_helper.get_train_hooks(
208
209
      flags_obj.hooks, model_dir=flags_obj.model_dir,
      batch_size=flags_obj.batch_size)
210
211

  # Train and evaluate model.
212
  for _ in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
213
214
215
    mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print('\nEvaluation results:\n\t%s\n' % eval_results)
216

217
    if model_helpers.past_stop_threshold(flags_obj.stop_threshold,
Asim Shankar's avatar
Asim Shankar committed
218
                                         eval_results['accuracy']):
219
220
      break

221
  # Export the model
222
  if flags_obj.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
223
224
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
225
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
226
    })
227
228
    mnist_classifier.export_savedmodel(flags_obj.export_dir, input_fn,
                                       strip_default_attrs=True)
229
230


231
232
233
234
def main(_):
  run_mnist(flags.FLAGS)


235
if __name__ == '__main__':
236
  tf.logging.set_verbosity(tf.logging.INFO)
237
238
  define_mnist_flags()
  absl_app.run(main)