mnist.py 8.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
21
import sys
22

Karmel Allison's avatar
Karmel Allison committed
23
import tensorflow as tf  # pylint: disable=g-bad-import-order
24

25
from official.mnist import dataset
26
from official.utils.arg_parsers import parsers
27
from official.utils.logs import hooks_helper
28
from official.utils.misc import model_helpers
29

30
LEARNING_RATE = 1e-4
31

Karmel Allison's avatar
Karmel Allison committed
32

33
def create_model(data_format):
Asim Shankar's avatar
Asim Shankar committed
34
  """Model to recognize digits in the MNIST dataset.
Asim Shankar's avatar
Asim Shankar committed
35
36
37
38
39
40

  Network structure is equivalent to:
  https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
  and
  https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

41
42
43
  But uses the tf.keras API.

  Args:
Asim Shankar's avatar
Asim Shankar committed
44
45
46
    data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is
      typically faster on GPUs while 'channels_last' is typically faster on
      CPUs. See
47
      https://www.tensorflow.org/performance/performance_guide#data_formats
Asim Shankar's avatar
Asim Shankar committed
48

49
50
51
52
53
54
55
56
57
  Returns:
    A tf.keras.Model.
  """
  if data_format == 'channels_first':
    input_shape = [1, 28, 28]
  else:
    assert data_format == 'channels_last'
    input_shape = [28, 28, 1]

Asim Shankar's avatar
Asim Shankar committed
58
59
60
  l = tf.keras.layers
  max_pool = l.MaxPooling2D(
      (2, 2), (2, 2), padding='same', data_format=data_format)
61
62
  # The model consists of a sequential chain of layers, so tf.keras.Sequential
  # (a subclass of tf.keras.Model) makes for a compact description.
Asim Shankar's avatar
Asim Shankar committed
63
64
  return tf.keras.Sequential(
      [
65
66
67
          l.Reshape(
              target_shape=input_shape,
              input_shape=(28 * 28,)),
Asim Shankar's avatar
Asim Shankar committed
68
69
70
71
72
          l.Conv2D(
              32,
              5,
              padding='same',
              data_format=data_format,
73
74
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
75
76
77
78
79
          l.Conv2D(
              64,
              5,
              padding='same',
              data_format=data_format,
80
81
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
82
83
84
85
86
          l.Flatten(),
          l.Dense(1024, activation=tf.nn.relu),
          l.Dropout(0.4),
          l.Dense(10)
      ])
Asim Shankar's avatar
Asim Shankar committed
87
88
89
90


def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
91
  model = create_model(params['data_format'])
92
93
94
95
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
96
  if mode == tf.estimator.ModeKeys.PREDICT:
97
98
99
100
101
102
103
104
105
106
107
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
108
  if mode == tf.estimator.ModeKeys.TRAIN:
109
    optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
110
111
112
113
114

    # If we are running multi-GPU, we need to wrap the optimizer.
    if params.get('multi_gpu'):
      optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)

115
    logits = model(image, training=True)
116
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
117
    accuracy = tf.metrics.accuracy(
118
        labels=labels, predictions=tf.argmax(logits, axis=1))
119
120
121
122

    # Name tensors to be logged with LoggingTensorHook.
    tf.identity(LEARNING_RATE, 'learning_rate')
    tf.identity(loss, 'cross_entropy')
123
    tf.identity(accuracy[1], name='train_accuracy')
124
125

    # Save accuracy scalar to Tensorboard output.
126
    tf.summary.scalar('train_accuracy', accuracy[1])
127

128
129
130
131
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
132
  if mode == tf.estimator.ModeKeys.EVAL:
133
    logits = model(image, training=False)
134
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
135
136
137
138
139
140
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Asim Shankar's avatar
Asim Shankar committed
141
                    labels=labels, predictions=tf.argmax(logits, axis=1)),
142
        })
143
144


145
def validate_batch_size_for_multi_gpu(batch_size):
Karmel Allison's avatar
Karmel Allison committed
146
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.
147
148
149
150

  Note that this should eventually be handled by replicate_model_fn
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
Karmel Allison's avatar
Karmel Allison committed
151
152
153
154
155
156

  Args:
    batch_size: the number of examples processed in each training batch.

  Raises:
    ValueError: if no GPUs are found, or selected batch_size is invalid.
157
  """
Karmel Allison's avatar
Karmel Allison committed
158
  from tensorflow.python.client import device_lib  # pylint: disable=g-import-not-at-top
159
160
161
162
163

  local_device_protos = device_lib.list_local_devices()
  num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU'])
  if not num_gpus:
    raise ValueError('Multi-GPU mode was specified, but no GPUs '
Karmel Allison's avatar
Karmel Allison committed
164
                     'were found. To use CPU, run without --multi_gpu.')
165

166
167
168
  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
Karmel Allison's avatar
Karmel Allison committed
169
170
171
           'must be a multiple of the number of available GPUs. '
           'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
          ).format(num_gpus, batch_size, batch_size - remainder)
172
173
174
    raise ValueError(err)


175
176
177
178
def main(argv):
  parser = MNISTArgParser()
  flags = parser.parse_args(args=argv[1:])

179
180
  model_function = model_fn

181
182
  if flags.multi_gpu:
    validate_batch_size_for_multi_gpu(flags.batch_size)
183
184
185
186
187
188
189

    # There are two steps required if using multi-GPU: (1) wrap the model_fn,
    # and (2) wrap the optimizer. The first happens here, and (2) happens
    # in the model_fn itself when the optimizer is defined.
    model_function = tf.contrib.estimator.replicate_model_fn(
        model_fn, loss_reduction=tf.losses.Reduction.MEAN)

190
  data_format = flags.data_format
Asim Shankar's avatar
Asim Shankar committed
191
192
193
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
194
  mnist_classifier = tf.estimator.Estimator(
195
      model_fn=model_function,
196
      model_dir=flags.model_dir,
Asim Shankar's avatar
Asim Shankar committed
197
      params={
198
          'data_format': data_format,
199
          'multi_gpu': flags.multi_gpu
Asim Shankar's avatar
Asim Shankar committed
200
      })
201

202
  # Set up training and evaluation input functions.
Asim Shankar's avatar
Asim Shankar committed
203
  def train_input_fn():
Karmel Allison's avatar
Karmel Allison committed
204
205
    """Prepare data for training."""

Asim Shankar's avatar
Asim Shankar committed
206
207
208
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
209
210
    ds = dataset.train(flags.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(flags.batch_size)
Asim Shankar's avatar
Asim Shankar committed
211

212
213
    # Iterate through the dataset a set number (`epochs_between_evals`) of times
    # during each training session.
214
    ds = ds.repeat(flags.epochs_between_evals)
215
    return ds
216

Asim Shankar's avatar
Asim Shankar committed
217
  def eval_input_fn():
218
219
    return dataset.test(flags.data_dir).batch(
        flags.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
220

221
222
  # Set up hook that outputs training logs every 100 steps.
  train_hooks = hooks_helper.get_train_hooks(
223
      flags.hooks, batch_size=flags.batch_size)
224
225

  # Train and evaluate model.
226
  for _ in range(flags.train_epochs // flags.epochs_between_evals):
227
228
229
    mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print('\nEvaluation results:\n\t%s\n' % eval_results)
230

Asim Shankar's avatar
Asim Shankar committed
231
232
    if model_helpers.past_stop_threshold(flags.stop_threshold,
                                         eval_results['accuracy']):
233
234
      break

235
  # Export the model
236
  if flags.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
237
238
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
239
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
240
    })
241
    mnist_classifier.export_savedmodel(flags.export_dir, input_fn)
242

243

244
class MNISTArgParser(argparse.ArgumentParser):
245
  """Argument parser for running MNIST model."""
Karmel Allison's avatar
Karmel Allison committed
246

247
  def __init__(self):
248
    super(MNISTArgParser, self).__init__(parents=[
249
        parsers.BaseParser(),
250
251
        parsers.ImageModelParser(),
    ])
252
253
254
255
256
257

    self.set_defaults(
        data_dir='/tmp/mnist_data',
        model_dir='/tmp/mnist_model',
        batch_size=100,
        train_epochs=40)
258
259
260


if __name__ == '__main__':
261
  tf.logging.set_verbosity(tf.logging.INFO)
262
  main(argv=sys.argv)