mnist.py 8.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
21
import sys
22

Karmel Allison's avatar
Karmel Allison committed
23
import tensorflow as tf  # pylint: disable=g-bad-import-order
24

25
from official.mnist import dataset
26
from official.utils.arg_parsers import parsers
27
from official.utils.logs import hooks_helper
28
from official.utils.misc import model_helpers
29

30
LEARNING_RATE = 1e-4
31

Karmel Allison's avatar
Karmel Allison committed
32

33
def create_model(data_format):
Asim Shankar's avatar
Asim Shankar committed
34
  """Model to recognize digits in the MNIST dataset.
Asim Shankar's avatar
Asim Shankar committed
35
36
37
38
39
40

  Network structure is equivalent to:
  https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
  and
  https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

41
42
43
  But uses the tf.keras API.

  Args:
Asim Shankar's avatar
Asim Shankar committed
44
45
46
    data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is
      typically faster on GPUs while 'channels_last' is typically faster on
      CPUs. See
47
      https://www.tensorflow.org/performance/performance_guide#data_formats
Asim Shankar's avatar
Asim Shankar committed
48

49
50
51
52
53
54
55
56
57
  Returns:
    A tf.keras.Model.
  """
  if data_format == 'channels_first':
    input_shape = [1, 28, 28]
  else:
    assert data_format == 'channels_last'
    input_shape = [28, 28, 1]

Asim Shankar's avatar
Asim Shankar committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  l = tf.keras.layers
  max_pool = l.MaxPooling2D(
      (2, 2), (2, 2), padding='same', data_format=data_format)
  return tf.keras.Sequential(
      [
          l.Reshape(input_shape),
          l.Conv2D(
              32,
              5,
              padding='same',
              data_format=data_format,
              activation=tf.nn.relu), max_pool,
          l.Conv2D(
              64,
              5,
              padding='same',
              data_format=data_format,
              activation=tf.nn.relu), max_pool,
          l.Flatten(),
          l.Dense(1024, activation=tf.nn.relu),
          l.Dropout(0.4),
          l.Dense(10)
      ])
Asim Shankar's avatar
Asim Shankar committed
81
82
83
84


def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
85
  model = create_model(params['data_format'])
86
87
88
89
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
90
  if mode == tf.estimator.ModeKeys.PREDICT:
91
92
93
94
95
96
97
98
99
100
101
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
102
  if mode == tf.estimator.ModeKeys.TRAIN:
103
    optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
104
105
106
107
108

    # If we are running multi-GPU, we need to wrap the optimizer.
    if params.get('multi_gpu'):
      optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)

109
    logits = model(image, training=True)
110
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
111
    accuracy = tf.metrics.accuracy(
112
        labels=labels, predictions=tf.argmax(logits, axis=1))
113
114
115
116

    # Name tensors to be logged with LoggingTensorHook.
    tf.identity(LEARNING_RATE, 'learning_rate')
    tf.identity(loss, 'cross_entropy')
117
    tf.identity(accuracy[1], name='train_accuracy')
118
119

    # Save accuracy scalar to Tensorboard output.
120
    tf.summary.scalar('train_accuracy', accuracy[1])
121

122
123
124
125
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
126
  if mode == tf.estimator.ModeKeys.EVAL:
127
    logits = model(image, training=False)
128
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
129
130
131
132
133
134
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Asim Shankar's avatar
Asim Shankar committed
135
                    labels=labels, predictions=tf.argmax(logits, axis=1)),
136
        })
137
138


139
def validate_batch_size_for_multi_gpu(batch_size):
Karmel Allison's avatar
Karmel Allison committed
140
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.
141
142
143
144

  Note that this should eventually be handled by replicate_model_fn
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
Karmel Allison's avatar
Karmel Allison committed
145
146
147
148
149
150

  Args:
    batch_size: the number of examples processed in each training batch.

  Raises:
    ValueError: if no GPUs are found, or selected batch_size is invalid.
151
  """
Karmel Allison's avatar
Karmel Allison committed
152
  from tensorflow.python.client import device_lib  # pylint: disable=g-import-not-at-top
153
154
155
156
157

  local_device_protos = device_lib.list_local_devices()
  num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU'])
  if not num_gpus:
    raise ValueError('Multi-GPU mode was specified, but no GPUs '
Karmel Allison's avatar
Karmel Allison committed
158
                     'were found. To use CPU, run without --multi_gpu.')
159

160
161
162
  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
Karmel Allison's avatar
Karmel Allison committed
163
164
165
           'must be a multiple of the number of available GPUs. '
           'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
          ).format(num_gpus, batch_size, batch_size - remainder)
166
167
168
    raise ValueError(err)


169
170
171
172
def main(argv):
  parser = MNISTArgParser()
  flags = parser.parse_args(args=argv[1:])

173
174
  model_function = model_fn

175
176
  if flags.multi_gpu:
    validate_batch_size_for_multi_gpu(flags.batch_size)
177
178
179
180
181
182
183

    # There are two steps required if using multi-GPU: (1) wrap the model_fn,
    # and (2) wrap the optimizer. The first happens here, and (2) happens
    # in the model_fn itself when the optimizer is defined.
    model_function = tf.contrib.estimator.replicate_model_fn(
        model_fn, loss_reduction=tf.losses.Reduction.MEAN)

184
  data_format = flags.data_format
Asim Shankar's avatar
Asim Shankar committed
185
186
187
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
188
  mnist_classifier = tf.estimator.Estimator(
189
      model_fn=model_function,
190
      model_dir=flags.model_dir,
Asim Shankar's avatar
Asim Shankar committed
191
      params={
192
          'data_format': data_format,
193
          'multi_gpu': flags.multi_gpu
Asim Shankar's avatar
Asim Shankar committed
194
      })
195

196
  # Set up training and evaluation input functions.
Asim Shankar's avatar
Asim Shankar committed
197
  def train_input_fn():
Karmel Allison's avatar
Karmel Allison committed
198
199
    """Prepare data for training."""

Asim Shankar's avatar
Asim Shankar committed
200
201
202
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
203
204
    ds = dataset.train(flags.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(flags.batch_size)
Asim Shankar's avatar
Asim Shankar committed
205

206
207
    # Iterate through the dataset a set number (`epochs_between_evals`) of times
    # during each training session.
208
    ds = ds.repeat(flags.epochs_between_evals)
209
    return ds
210

Asim Shankar's avatar
Asim Shankar committed
211
  def eval_input_fn():
212
213
    return dataset.test(flags.data_dir).batch(
        flags.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
214

215
216
  # Set up hook that outputs training logs every 100 steps.
  train_hooks = hooks_helper.get_train_hooks(
217
      flags.hooks, batch_size=flags.batch_size)
218
219

  # Train and evaluate model.
220
  for _ in range(flags.train_epochs // flags.epochs_between_evals):
221
222
223
    mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print('\nEvaluation results:\n\t%s\n' % eval_results)
224

Asim Shankar's avatar
Asim Shankar committed
225
226
    if model_helpers.past_stop_threshold(flags.stop_threshold,
                                         eval_results['accuracy']):
227
228
      break

229
  # Export the model
230
  if flags.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
231
232
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
233
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
234
    })
235
    mnist_classifier.export_savedmodel(flags.export_dir, input_fn)
236

237

238
class MNISTArgParser(argparse.ArgumentParser):
239
  """Argument parser for running MNIST model."""
Karmel Allison's avatar
Karmel Allison committed
240

241
  def __init__(self):
242
    super(MNISTArgParser, self).__init__(parents=[
Karmel Allison's avatar
Karmel Allison committed
243
        parsers.BaseParser(),
244
245
246
        parsers.ImageModelParser(),
        parsers.ExportParser(),
    ])
247
248
249
250
251
252

    self.set_defaults(
        data_dir='/tmp/mnist_data',
        model_dir='/tmp/mnist_model',
        batch_size=100,
        train_epochs=40)
253
254
255


if __name__ == '__main__':
256
  tf.logging.set_verbosity(tf.logging.INFO)
257
  main(argv=sys.argv)