mnist.py 8.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
22
import sys
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

import tensorflow as tf

parser = argparse.ArgumentParser()

# Basic model parameters.
parser.add_argument('--batch_size', type=int, default=100,
                    help='Number of images to process in a batch')

parser.add_argument('--data_dir', type=str, default='/tmp/mnist_data',
                    help='Path to the MNIST data directory.')

parser.add_argument('--model_dir', type=str, default='/tmp/mnist_model',
                    help='The directory where the model will be stored.')

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
parser.add_argument('--train_epochs', type=int, default=40,
                    help='Number of epochs to train.')

parser.add_argument(
    '--data_format', type=str, default=None,
    choices=['channels_first', 'channels_last'],
    help='A flag to override the data format used in the model. channels_first '
         'provides a performance boost on GPU but is not always compatible '
         'with CPU. If left unspecified, the data format will be chosen '
         'automatically based on whether TensorFlow was built for CPU or GPU.')

_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}
53
54


55
def input_fn(is_training, filename, batch_size=1, num_epochs=1):
56
  """A simple input_fn using the tf.data input pipeline."""
57

58
  def example_parser(serialized_example):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    """Parses a single tf.Example into image and label tensors."""
    features = tf.parse_single_example(
        serialized_example,
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
            'label': tf.FixedLenFeature([], tf.int64),
        })
    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape([28 * 28])

    # Normalize the values of the image from the range [0, 255] to [-0.5, 0.5]
    image = tf.cast(image, tf.float32) / 255 - 0.5
    label = tf.cast(features['label'], tf.int32)
    return image, tf.one_hot(label, 10)

74
  dataset = tf.data.TFRecordDataset([filename])
75

76
  # Apply dataset transformations
77
78
79
80
81
  if is_training:
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes have better performance. Because MNIST is
    # a small dataset, we can easily shuffle the full epoch.
    dataset = dataset.shuffle(buffer_size=_NUM_IMAGES['train'])
82

Neal Wu's avatar
Neal Wu committed
83
84
  # We call repeat after shuffling, rather than before, to prevent separate
  # epochs from blending together.
85
  dataset = dataset.repeat(num_epochs)
86

87
  # Map example_parser over dataset, and batch results by up to batch_size
88
  dataset = dataset.map(example_parser).prefetch(batch_size)
89
  dataset = dataset.batch(batch_size)
Neal Wu's avatar
Neal Wu committed
90
91
  iterator = dataset.make_one_shot_iterator()
  images, labels = iterator.get_next()
92
93
94
95

  return images, labels


96
def mnist_model(inputs, mode, data_format):
97
98
99
100
101
102
  """Takes the MNIST inputs and mode and outputs a tensor of logits."""
  # Input Layer
  # Reshape X to 4-D tensor: [batch_size, width, height, channels]
  # MNIST images are 28x28 pixels, and have one color channel
  inputs = tf.reshape(inputs, [-1, 28, 28, 1])

103
  if data_format is None:
104
105
    # When running on GPU, transpose the data from channels_last (NHWC) to
    # channels_first (NCHW) to improve performance.
106
    # See https://www.tensorflow.org/performance/performance_guide#data_formats
107
108
109
110
    data_format = ('channels_first' if tf.test.is_built_with_cuda() else
                   'channels_last')

  if data_format == 'channels_first':
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    inputs = tf.transpose(inputs, [0, 3, 1, 2])

  # Convolutional Layer #1
  # Computes 32 features using a 5x5 filter with ReLU activation.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 28, 28, 1]
  # Output Tensor Shape: [batch_size, 28, 28, 32]
  conv1 = tf.layers.conv2d(
      inputs=inputs,
      filters=32,
      kernel_size=[5, 5],
      padding='same',
      activation=tf.nn.relu,
      data_format=data_format)

  # Pooling Layer #1
  # First max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 28, 28, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 32]
  pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2,
                                  data_format=data_format)

  # Convolutional Layer #2
  # Computes 64 features using a 5x5 filter.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 14, 14, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 64]
  conv2 = tf.layers.conv2d(
      inputs=pool1,
      filters=64,
      kernel_size=[5, 5],
      padding='same',
      activation=tf.nn.relu,
      data_format=data_format)

  # Pooling Layer #2
  # Second max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 14, 14, 64]
  # Output Tensor Shape: [batch_size, 7, 7, 64]
  pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2,
                                  data_format=data_format)

  # Flatten tensor into a batch of vectors
  # Input Tensor Shape: [batch_size, 7, 7, 64]
  # Output Tensor Shape: [batch_size, 7 * 7 * 64]
  pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

  # Dense Layer
  # Densely connected layer with 1024 neurons
  # Input Tensor Shape: [batch_size, 7 * 7 * 64]
  # Output Tensor Shape: [batch_size, 1024]
  dense = tf.layers.dense(inputs=pool2_flat, units=1024,
                          activation=tf.nn.relu)

  # Add dropout operation; 0.6 probability that element will be kept
  dropout = tf.layers.dropout(
      inputs=dense, rate=0.4, training=(mode == tf.estimator.ModeKeys.TRAIN))

  # Logits layer
  # Input Tensor Shape: [batch_size, 1024]
  # Output Tensor Shape: [batch_size, 10]
  logits = tf.layers.dense(inputs=dropout, units=10)
  return logits


176
def mnist_model_fn(features, labels, mode, params):
177
  """Model function for MNIST."""
178
  logits = mnist_model(features, mode, params['data_format'])
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

  predictions = {
      'classes': tf.argmax(input=logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits)

  # Configure the training op
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4)
    train_op = optimizer.minimize(loss, tf.train.get_or_create_global_step())
  else:
    train_op = None

  accuracy = tf.metrics.accuracy(
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
214
215
216
217
218
219
220
  # Make sure that training and testing data have been converted.
  train_file = os.path.join(FLAGS.data_dir, 'train.tfrecords')
  test_file = os.path.join(FLAGS.data_dir, 'test.tfrecords')
  assert (tf.gfile.Exists(train_file) and tf.gfile.Exists(test_file)), (
      'Run convert_to_records.py first to convert the MNIST data to TFRecord '
      'file format.')

221
222
  # Create the Estimator
  mnist_classifier = tf.estimator.Estimator(
223
224
      model_fn=mnist_model_fn, model_dir=FLAGS.model_dir,
      params={'data_format': FLAGS.data_format})
225

226
  # Set up training hook that logs the training accuracy every 100 steps.
227
228
229
230
231
232
  tensors_to_log = {
      'train_accuracy': 'train_accuracy'
  }
  logging_hook = tf.train.LoggingTensorHook(
      tensors=tensors_to_log, every_n_iter=100)

233
  # Train the model
234
  mnist_classifier.train(
235
236
      input_fn=lambda: input_fn(
          True, train_file, FLAGS.batch_size, FLAGS.train_epochs),
237
238
239
240
      hooks=[logging_hook])

  # Evaluate the model and print results
  eval_results = mnist_classifier.evaluate(
241
      input_fn=lambda: input_fn(False, test_file, FLAGS.batch_size))
242
  print()
243
  print('Evaluation results:\n\t%s' % eval_results)
244
245
246
247


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
248
249
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)