mnist.py 9.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
21
import sys
22

Karmel Allison's avatar
Karmel Allison committed
23
import tensorflow as tf  # pylint: disable=g-bad-import-order
24

25
from official.mnist import dataset
26
from official.utils.arg_parsers import parsers
27
from official.utils.logs import hooks_helper
28

29
LEARNING_RATE = 1e-4
30

Karmel Allison's avatar
Karmel Allison committed
31

Asim Shankar's avatar
Asim Shankar committed
32
class Model(tf.keras.Model):
Asim Shankar's avatar
Asim Shankar committed
33
  """Model to recognize digits in the MNIST dataset.
Asim Shankar's avatar
Asim Shankar committed
34
35
36
37
38
39

  Network structure is equivalent to:
  https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
  and
  https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

Asim Shankar's avatar
Asim Shankar committed
40
  But written as a tf.keras.Model using the tf.layers API.
Asim Shankar's avatar
Asim Shankar committed
41
  """
Asim Shankar's avatar
Asim Shankar committed
42
43
44
45
46
47
48
49
50
51

  def __init__(self, data_format):
    """Creates a model for classifying a hand-written digit.

    Args:
      data_format: Either 'channels_first' or 'channels_last'.
        'channels_first' is typically faster on GPUs while 'channels_last' is
        typically faster on CPUs. See
        https://www.tensorflow.org/performance/performance_guide#data_formats
    """
Asim Shankar's avatar
Asim Shankar committed
52
    super(Model, self).__init__()
Asim Shankar's avatar
Asim Shankar committed
53
54
55
56
57
58
59
60
61
62
63
64
    if data_format == 'channels_first':
      self._input_shape = [-1, 1, 28, 28]
    else:
      assert data_format == 'channels_last'
      self._input_shape = [-1, 28, 28, 1]

    self.conv1 = tf.layers.Conv2D(
        32, 5, padding='same', data_format=data_format, activation=tf.nn.relu)
    self.conv2 = tf.layers.Conv2D(
        64, 5, padding='same', data_format=data_format, activation=tf.nn.relu)
    self.fc1 = tf.layers.Dense(1024, activation=tf.nn.relu)
    self.fc2 = tf.layers.Dense(10)
65
    self.dropout = tf.layers.Dropout(0.4)
Asim Shankar's avatar
Asim Shankar committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    self.max_pool2d = tf.layers.MaxPooling2D(
        (2, 2), (2, 2), padding='same', data_format=data_format)

  def __call__(self, inputs, training):
    """Add operations to classify a batch of input images.

    Args:
      inputs: A Tensor representing a batch of input images.
      training: A boolean. Set to True to add operations required only when
        training the classifier.

    Returns:
      A logits Tensor with shape [<batch_size>, 10].
    """
    y = tf.reshape(inputs, self._input_shape)
    y = self.conv1(y)
    y = self.max_pool2d(y)
    y = self.conv2(y)
    y = self.max_pool2d(y)
    y = tf.layers.flatten(y)
    y = self.fc1(y)
    y = self.dropout(y, training=training)
    return self.fc2(y)


def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
  model = Model(params['data_format'])
94
95
96
97
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
98
  if mode == tf.estimator.ModeKeys.PREDICT:
99
100
101
102
103
104
105
106
107
108
109
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
110
  if mode == tf.estimator.ModeKeys.TRAIN:
111
    optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
112
113
114
115
116

    # If we are running multi-GPU, we need to wrap the optimizer.
    if params.get('multi_gpu'):
      optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)

117
    logits = model(image, training=True)
118
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
119
    accuracy = tf.metrics.accuracy(
120
        labels=labels, predictions=tf.argmax(logits, axis=1))
121
122
123
124

    # Name tensors to be logged with LoggingTensorHook.
    tf.identity(LEARNING_RATE, 'learning_rate')
    tf.identity(loss, 'cross_entropy')
125
    tf.identity(accuracy[1], name='train_accuracy')
126
127

    # Save accuracy scalar to Tensorboard output.
128
    tf.summary.scalar('train_accuracy', accuracy[1])
129

130
131
132
133
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
134
  if mode == tf.estimator.ModeKeys.EVAL:
135
    logits = model(image, training=False)
136
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
137
138
139
140
141
142
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Mark Daoust's avatar
Mark Daoust committed
143
                    labels=labels,
144
145
                    predictions=tf.argmax(logits, axis=1)),
        })
146
147


148
def validate_batch_size_for_multi_gpu(batch_size):
Karmel Allison's avatar
Karmel Allison committed
149
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.
150
151
152
153

  Note that this should eventually be handled by replicate_model_fn
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
Karmel Allison's avatar
Karmel Allison committed
154
155
156
157
158
159

  Args:
    batch_size: the number of examples processed in each training batch.

  Raises:
    ValueError: if no GPUs are found, or selected batch_size is invalid.
160
  """
Karmel Allison's avatar
Karmel Allison committed
161
  from tensorflow.python.client import device_lib  # pylint: disable=g-import-not-at-top
162
163
164
165
166

  local_device_protos = device_lib.list_local_devices()
  num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU'])
  if not num_gpus:
    raise ValueError('Multi-GPU mode was specified, but no GPUs '
Karmel Allison's avatar
Karmel Allison committed
167
                     'were found. To use CPU, run without --multi_gpu.')
168

169
170
171
  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
Karmel Allison's avatar
Karmel Allison committed
172
173
174
           'must be a multiple of the number of available GPUs. '
           'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
          ).format(num_gpus, batch_size, batch_size - remainder)
175
176
177
    raise ValueError(err)


178
179
180
181
def main(argv):
  parser = MNISTArgParser()
  flags = parser.parse_args(args=argv[1:])

182
183
  model_function = model_fn

184
185
  if flags.multi_gpu:
    validate_batch_size_for_multi_gpu(flags.batch_size)
186
187
188
189
190
191
192

    # There are two steps required if using multi-GPU: (1) wrap the model_fn,
    # and (2) wrap the optimizer. The first happens here, and (2) happens
    # in the model_fn itself when the optimizer is defined.
    model_function = tf.contrib.estimator.replicate_model_fn(
        model_fn, loss_reduction=tf.losses.Reduction.MEAN)

193
  data_format = flags.data_format
Asim Shankar's avatar
Asim Shankar committed
194
195
196
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
197
  mnist_classifier = tf.estimator.Estimator(
198
      model_fn=model_function,
199
      model_dir=flags.model_dir,
Asim Shankar's avatar
Asim Shankar committed
200
      params={
201
          'data_format': data_format,
202
          'multi_gpu': flags.multi_gpu
Asim Shankar's avatar
Asim Shankar committed
203
      })
204

205
  # Set up training and evaluation input functions.
Asim Shankar's avatar
Asim Shankar committed
206
  def train_input_fn():
Karmel Allison's avatar
Karmel Allison committed
207
208
    """Prepare data for training."""

Asim Shankar's avatar
Asim Shankar committed
209
210
211
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
212
213
    ds = dataset.train(flags.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(flags.batch_size)
Asim Shankar's avatar
Asim Shankar committed
214

215
216
    # Iterate through the dataset a set number (`epochs_between_evals`) of times
    # during each training session.
217
    ds = ds.repeat(flags.epochs_between_evals)
218
    return ds
219

Asim Shankar's avatar
Asim Shankar committed
220
  def eval_input_fn():
221
222
    return dataset.test(flags.data_dir).batch(
        flags.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
223

224
225
  # Set up hook that outputs training logs every 100 steps.
  train_hooks = hooks_helper.get_train_hooks(
226
      flags.hooks, batch_size=flags.batch_size)
227
228

  # Train and evaluate model.
229
  for _ in range(flags.train_epochs // flags.epochs_between_evals):
230
231
232
    mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print('\nEvaluation results:\n\t%s\n' % eval_results)
233

234
  # Export the model
235
  if flags.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
236
237
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
238
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
239
    })
240
    mnist_classifier.export_savedmodel(flags.export_dir, input_fn)
241

242

243
class MNISTArgParser(argparse.ArgumentParser):
244
  """Argument parser for running MNIST model."""
Karmel Allison's avatar
Karmel Allison committed
245

246
  def __init__(self):
247
    super(MNISTArgParser, self).__init__(parents=[
Karmel Allison's avatar
Karmel Allison committed
248
        parsers.BaseParser(),
249
250
251
        parsers.ImageModelParser(),
        parsers.ExportParser(),
    ])
252
253
254
255
256
257

    self.set_defaults(
        data_dir='/tmp/mnist_data',
        model_dir='/tmp/mnist_model',
        batch_size=100,
        train_epochs=40)
258
259
260


if __name__ == '__main__':
261
  tf.logging.set_verbosity(tf.logging.INFO)
262
  main(argv=sys.argv)