keras_common.py 8.99 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

23
24
import numpy as np

Toby Boyd's avatar
Toby Boyd committed
25
26
27
# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf
28
29
from tensorflow.python.keras.optimizer_v2 import (gradient_descent as
                                                  gradient_descent_v2)
30

Shining Sun's avatar
Shining Sun committed
31
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
32
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
33
34
TRAIN_TOP_1 = 'training_accuracy_top_1'

Shining Sun's avatar
Shining Sun committed
35

36
37
38
39
40
41
42
43
class BatchTimestamp(object):
  """A structure to store batch time stamp."""

  def __init__(self, batch_index, timestamp):
    self.batch_index = batch_index
    self.timestamp = timestamp


44
45
46
class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

47
  def __init__(self, batch_size, log_steps):
48
    """Callback for logging performance (# image/second).
49
50
51
52
53

    Args:
      batch_size: Total batch size.

    """
54
    self.batch_size = batch_size
55
    super(TimeHistory, self).__init__()
56
57
    self.log_steps = log_steps

58
59
    # Logs start of step 0 then end of each step based on log_steps interval.
    self.timestamp_log = []
60
61
62
63

  def on_train_begin(self, logs=None):
    self.record_batch = True

64
65
66
  def on_train_end(self, logs=None):
    self.train_finish_time = time.time()

67
68
  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
69
70
      timestamp = time.time()
      self.start_time = timestamp
71
      self.record_batch = False
72
73
      if batch == 0:
        self.timestamp_log.append(BatchTimestamp(batch, timestamp))
74
75

  def on_batch_end(self, batch, logs=None):
Shining Sun's avatar
Shining Sun committed
76
    if batch % self.log_steps == 0:
77
78
      timestamp = time.time()
      elapsed_time = timestamp - self.start_time
79
      examples_per_second = (self.batch_size * self.log_steps) / elapsed_time
80
      if batch != 0:
81
82
        self.record_batch = True
        self.timestamp_log.append(BatchTimestamp(batch, timestamp))
83
84
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
Shining Sun's avatar
Shining Sun committed
85
                        (batch, elapsed_time, examples_per_second))
86

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
108
109
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
110
111
112
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
113
    """Executes before step begins."""
114
115
116
117
    lr = self.schedule(self.epochs,
                       batch,
                       self.batches_per_epoch,
                       self.batch_size)
118
119
120
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
Shining Sun's avatar
Shining Sun committed
121
      self.model.optimizer.learning_rate = lr  # lr should be a float here
122
      self.prev_lr = lr
123
124
125
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler '
                       'change learning rate to %s.', self.epochs, batch, lr)

126

Shining Sun's avatar
Shining Sun committed
127
def get_optimizer():
128
129
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
Shining Sun's avatar
Shining Sun committed
130
  return gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
131
132


133
def get_callbacks(learning_rate_schedule_fn, num_images):
134
  """Returns common callbacks."""
135
  time_callback = TimeHistory(FLAGS.batch_size, FLAGS.log_steps)
136
137

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
138
      log_dir=FLAGS.model_dir)
139

Shining Sun's avatar
Shining Sun committed
140
  lr_callback = LearningRateBatchScheduler(
141
142
143
      learning_rate_schedule_fn,
      batch_size=FLAGS.batch_size,
      num_images=num_images)
144
145
146

  return time_callback, tensorboard_callback, lr_callback

Shining Sun's avatar
Shining Sun committed
147

148
def build_stats(history, eval_output, time_callback):
149
150
151
152
153
154
155
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
156
    time_callback: Time tracking callback likely used during keras.fit.
157
158
159
160
161
162
163
164

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
    stats['accuracy_top_1'] = eval_output[1].item()
    stats['eval_loss'] = eval_output[0].item()
165

166
167
168
169
170
171
172
173
174
175
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['categorical_accuracy'][-1].item()
    elif 'sparse_categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['sparse_categorical_accuracy'][-1].item()

176
  if time_callback:
177
178
    timestamp_log = time_callback.timestamp_log
    stats['step_timestamp_log'] = timestamp_log
179
    stats['train_finish_time'] = time_callback.train_finish_time
180
181
182
183
184
    if len(timestamp_log) > 1:
      stats['avg_exp_per_second'] = (
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
185

186
187
188
  return stats


Shining Sun's avatar
Shining Sun committed
189
190
def define_keras_flags():
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
191
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
Shining Sun's avatar
Shining Sun committed
192
  flags.DEFINE_integer(
193
194
      name='train_steps', default=None,
      help='The number of steps to run for training. If it is larger than '
Shining Sun's avatar
Shining Sun committed
195
      '# batches per epoch, then use # batches per epoch. When this flag is '
196
      'set, only one epoch is going to run for training.')
197
198
199
200
201
  flags.DEFINE_integer(
      name='log_steps', default=100,
      help='For every log_steps, we log the timing information such as '
      'examples per second. Besides, for every log_steps, we store the '
      'timestamp of a batch end.')
202

Shining Sun's avatar
Shining Sun committed
203
204
205
206
207
208
209
210

def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
211
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
230
        [height, width, num_channels],
Shining Sun's avatar
Shining Sun committed
231
232
233
234
235
236
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
237
        [1],
Shining Sun's avatar
Shining Sun committed
238
239
240
241
242
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
243
    data = data.batch(batch_size)
Shining Sun's avatar
Shining Sun committed
244
245
246
247
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
248
249
250
251
252
253


def get_strategy_scope(strategy):
  if strategy:
    strategy_scope = strategy.scope()
  else:
Shining Sun's avatar
Shining Sun committed
254
    strategy_scope = DummyContextManager()
Shining Sun's avatar
Shining Sun committed
255
256
257
258
259

  return strategy_scope


class DummyContextManager(object):
Shining Sun's avatar
Shining Sun committed
260

Shining Sun's avatar
Shining Sun committed
261
262
263
264
265
  def __enter__(self):
    pass

  def __exit__(self, *args):
    pass